Academic literature on the topic 'Non Uniform Rational B-Splines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non Uniform Rational B-Splines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non Uniform Rational B-Splines"
Liu, Jiankang, Hongya Fu, Jihao Qin, and Hongyu Jin. "Sliding look-ahead window-based real-time feedrate planning for non-uniform rational B-splines curves." Advances in Mechanical Engineering 10, no. 12 (December 2018): 168781401881692. http://dx.doi.org/10.1177/1687814018816926.
Full textCheng, Ming-Yang, Hung-Wen Wu, and Alvin Wen-Yu Su. "On Non-Uniform Rational B-Splines Surface Neural Networks." Neural Processing Letters 28, no. 1 (May 10, 2008): 1–15. http://dx.doi.org/10.1007/s11063-008-9078-9.
Full textSUN, Shufeng. "Design of Spatial Cam Based on Non-uniform Rational B-splines." Journal of Mechanical Engineering 45, no. 08 (2009): 125. http://dx.doi.org/10.3901/jme.2009.08.125.
Full textAudoux, Y., M. Montemurro, and J. Pailhes. "A surrogate model based on Non-Uniform Rational B-Splines hypersurfaces." Procedia CIRP 70 (2018): 463–68. http://dx.doi.org/10.1016/j.procir.2018.03.234.
Full textPeng, Bao Ying, and Qiu Shi Han. "Cam Grinding Interpolation Research Based on Cubic Non-Uniform Rational B-Splines." Advanced Materials Research 443-444 (January 2012): 843–49. http://dx.doi.org/10.4028/www.scientific.net/amr.443-444.843.
Full textXuan, Guantao, Yuanyuan Shao, and Lei Liu. "Optimal Design of Grooved Cam Profile Using Non-uniform Rational B-splines." MATEC Web of Conferences 139 (2017): 00047. http://dx.doi.org/10.1051/matecconf/201713900047.
Full textSteuben, John C., Cameron J. Turner, and Richard H. Crawford. "Robust engineering design optimization with non-uniform rational B-splines-based metamodels." Engineering Optimization 45, no. 7 (July 2013): 767–86. http://dx.doi.org/10.1080/0305215x.2012.709509.
Full textMunira, Ali, Nur Najmiyah Jaafar, Abdul Aziz Fazilah, and Z. Nooraizedfiza. "Review on Non Uniform Rational B-Spline (NURBS): Concept and Optimization." Advanced Materials Research 903 (February 2014): 338–43. http://dx.doi.org/10.4028/www.scientific.net/amr.903.338.
Full textMüller, Mario, Mathias Hüsing, Agnes Beckermann, and Burkhard Corves. "Linkage and Cam Design with MechDev Based on Non-Uniform Rational B-Splines." Machines 8, no. 1 (January 21, 2020): 5. http://dx.doi.org/10.3390/machines8010005.
Full textLan, Peng, Zuqing Yu, Liang Du, and Nianli Lu. "Integration of non-uniform Rational B-splines geometry and rational absolute nodal coordinates formulation finite element analysis." Acta Mechanica Solida Sinica 27, no. 5 (October 2014): 486–95. http://dx.doi.org/10.1016/s0894-9166(14)60057-4.
Full textDissertations / Theses on the topic "Non Uniform Rational B-Splines"
Zhang, Xingchen. "CAD-based geometry parametrisation for shape optimisation using non-uniform rational B-splines." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/43186.
Full textKesper, Björn. "Konzeption eines Geo-Datenmodells unter Verwendung von Freiformkörpern auf der Basis von volume non uniform rational b-splines." [S.l. : s.n.], 2001. http://www.sub.uni-hamburg.de/disse/567/Disse.pdf.
Full textAudoux, Yohann. "Développement d’une nouvelle méthode de réduction de modèle basée sur les hypersurfaces NURBS (Non-Uniform Rational B-Splines)." Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0016/document.
Full textDespite undeniable progress achieved in computer sciences over the last decades, some problems remain intractable either by their numerical complexity (optimisation problems, …) or because they are subject to specific constraints such as real-time processing (virtual and augmented reality, …). In this context, metamodeling techniques can minimise the computational effort to realize complex multi-field and/or multi-scale simulations. The metamodeling process consists of setting up a metamodel that needs less resources to be evaluated than the complex one that is extracted from by guaranteeing, meanwhile, a minimal accuracy. Current methods generally require either the user’s expertise or arbitrary choices. Moreover, they are often tailored for a specific application, but they can be hardly transposed to other fields. Thus, even if it is not the best, our approach aims at obtaining a metamodel that remains a good one for whatever problem at hand. The developed strategy relies on NURBS hypersurfaces and stands out from existing ones by avoiding the use of empiric criteria to set its parameters. To do so, a metaheuristic (a genetic algorithm) able to deal with optimisation problems defined over a variable number of optimisation variables sets automatically all the hypersurface parameters so that the complexity is not transferred to the user
Shang, Xiaolei. "Adaptive 3D modelling based on single images using non-uniform rational B-spline technique." Thesis, University of Derby, 2005. http://hdl.handle.net/10545/196649.
Full textFlores, Melvin Estuardo Murray Richard M. Murray Richard M. "Real-time trajectory generation for constrained nonlinear dynamical systems using non-uniform rational B-spline basis functions /." Diss., Pasadena, Calif. : California Institute of Technology, 2008. http://resolver.caltech.edu/CaltechETD:etd-02192008-153449.
Full textRajab, Khairan. "Knowledge Guided Non-Uniform Rational B-Spline (NURBS) for Supporting Design Intent in Computer Aided Design (CAD) Modeling." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3302.
Full textNguyen, Thi Thanh Nga [Verfasser], Burkhard [Akademischer Betreuer] Corves, and Mathias [Akademischer Betreuer] Hüsing. "Motion design of cam mechanisms by using non-uniform rational B-Spline / Thi Thanh Nga Nguyen ; Burkhard Corves, Mathias Hüsing." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1176422006/34.
Full textSaiz, Ipiña Juan Antonio. "Análisis de sistemas radiantes sobre geometrías arbitrarias definidas por superficies paramétricas." Doctoral thesis, Universidad de Cantabria, 1995. http://hdl.handle.net/10803/10678.
Full textIn this thesis a method to analyze antennas on board of complex bodies is presented. The Geometrical Optics (GO) and Uniform Theory of Diffraction (UTD) have been used to analyze the effect of the structure in the radiation pattern of the antennas. The bodies are geometrically modelled by using NURBS (Non Uniform Rational B-Spline) surfaces. In addition to be accurate and efficient, the method is compatible with most of the modern CAGD (Computer Aided Geometric Design) available programs.The treatment of arbitrary geometries requires a code which can carry out an efficient 3D analysis. To obtain accurate results the description of the surface must be close to the real model, however this complicates the computational procedure. Here the structure is modeled by a collection of individual N.U.R.B.S. surface patches joined to form a complete description of the surface model. The NURBS description is able to manipulate free form surfaces with a low number of patches, and therefore, with a low amount of information. The initial description of the model by NURBS surfaces is accompanied with other complementary data for example : the topology of the surfaces, the boundary curves, the types of material and other inputs. It is very interesting to apply criteria to make the complete analysis faster.The method reads the NURBS description of the model and transforms the NURBS into the rational BEZIER surfaces. A rational BEZIER patch is also a parametric surface defined in terms of a linear combination of Bernstein polynomials.The antennas are modelled using simple numerical models based on arrays of electric and magnetic infinitesimal dipoles. This antenna modelization is very advantageous because with a little input data, the source is defined in any direction and the field value is readily accessible.The electromagnetic analysis of the contributive effects to the scattering field by the geometry, starts with the rigorous selection of the geometry illuminated from the source. Only the Bezier patches illuminated will be in memory of the computer during the analysis. The philosophy of this previous process is to discard in the process the part of the geometry which does not contribute to the scattering effects.The total field is the superposition of the following GO and UTD field components: direct field from the source, reflected fields from the Bezier patches of the model, diffracted fields from the arbitrary edges defined as a Bezier curves, creeping waves, double reflected field and diffracted-reflected and reflected-diffracted fields. The search of specular and diffraction points are the most CPU time consuming, thus before using the intersection algorithms it is necessary to apply a set of fast selection criteria which depend on the observation direction.The Fermat principle in conjunction with the Conjugate Gradient Method (CGM) is used for obtaining efficiently the reflection points and diffraction points on the structure. For each effect the complete ray path is examined to see whether or not it is interrupted by any Bezier patch of the model, in this case the field component is not computed. The double effects are treated using a generalization of the single effects algorithms. The method has been developed to analyze the near and far field cases for different frequencies.The developed method is quite efficient because it makes use of a small number of surfaces to model complex bodies, so it requires few memory and low computing time.
Sevilla, Cárdenas Rubén. "NURBS-Enhanced Finite Element Method (NEFEM)." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/5857.
Full textLa implementació i aplicació de NEFEM a problemes que requereixen una descripció acurada del contorn són, també, objectius prioritaris d'aquesta tesi. Per exemple, la solució numèrica de les equacions de Maxwell és molt sensible a la descripció geomètrica. Es presenta l'aplicació de NEFEM a problemes d'scattering d'ones electromagnètiques amb una formulació de Galerkin discontinu. S'investiga l'habilitat de NEFEM per obtenir solucions precises amb malles grolleres i aproximacions d'alt ordre, i s'exploren les possibilitats de les anomenades malles NEFEM, amb elements que contenen singularitats dintre d'una cara o aresta d'un element. Utilitzant NEFEM, la mida de la malla no està controlada per la complexitat de la geometria. Això implica una dràstica diferència en la mida dels elements i, per tant, suposa un gran estalvi tant des del punt de vista de requeriments de memòria com de cost computacional. Per tant, NEFEM és una eina poderosa per la simulació de problemes tridimensionals a gran escala amb geometries complexes. D'altra banda, la simulació de problemes d'scattering d'ones electromagnètiques requereix mecanismes per aconseguir una absorció eficient de les ones scattered. En aquesta tesi es discuteixen, optimitzen i comparen dues tècniques en el context de mètodes de Galerkin discontinu amb aproximacions d'alt ordre.
La resolució numèrica de les equacions d'Euler de la dinàmica de gasos és també molt sensible a la representació geomètrica. Quan es considera una formulació de Galerkin discontinu i elements isoparamètrics lineals, una producció espúria d'entropia pot evitar la convergència cap a la solució correcta. Amb NEFEM, l'acurada imposició de la condició de contorn en contorns impenetrables proporciona resultats precisos inclús amb una aproximació lineal de la solució. A més, la representació exacta del contorn permet una imposició adequada de les condicions de contorn amb malles grolleres i graus d'interpolació alts. Una propietat atractiva de la implementació proposada és que moltes de les rutines usuals en un codi d'elements finits poden ser aprofitades, per exemple rutines per realitzar el càlcul de les matrius elementals, assemblatge, etc. Només és necessari implementar noves rutines per calcular les quadratures numèriques en elements corbs i emmagatzemar el valor de les funciones de forma en els punts d'integració. S'han proposat vàries tècniques d'elements finits corbs a la literatura. En aquesta tesi, es compara NEFEM amb altres tècniques populars d'elements finits corbs (isoparamètics, cartesians i p-FEM), des de tres punts de vista diferents: aspectes teòrics, implementació i eficiència numèrica. En els exemples numèrics, NEFEM és, com a mínim, un ordre de magnitud més precís comparat amb altres tècniques. A més, per una precisió desitjada NEFEM és també més eficient: necessita un 50% dels graus de llibertat que fan servir els elements isoparamètrics o p-FEM per aconseguir la mateixa precisió. Per tant, l'ús de NEFEM és altament recomanable en presència de contorns corbs i/o quan el contorn té detalls geomètrics complexes.
This thesis proposes an improvement of the classical finite element method (FEM) for an efficient treatment of curved boundaries: the NURBSenhanced FEM (NEFEM). It is able to exactly represent the geometry by means of the usual CAD boundary representation with non-uniform rational Bsplines (NURBS), while the solution is approximated with a standard piecewise polynomial interpolation. Therefore, in the vast majority of the domain, interpolation and numerical integration are standard, preserving the classical finite element (FE) convergence properties, and allowing a seamless coupling with standard FEs on the domain interior. Specifically designed polynomial interpolation and numerical integration are designed only for those elements affected by the NURBS boundary representation.
The implementation and application of NEFEM to problems demanding an accurate boundary representation are also primary goals of this thesis. For instance, the numerical solution of Maxwell's equations is highly sensitive to geometry description. The application of NEFEM to electromagnetic scattering problems using a discontinuous Galerkin formulation is presented. The ability of NEFEM to compute an accurate solution with coarse meshes and high-order approximations is investigated, and the possibilities of NEFEM meshes, with elements containing edge or corner singularities, are explored. With NEFEM, the mesh size is no longer subsidiary to geometry complexity, and depends only on the accuracy requirements on the solution, whereas standard FEs require mesh refinement to properly capture the geometry. This implies a drastic difference in mesh size that results in drastic memory savings, and also important savings in computational cost. Thus, NEFEM is a powerful tool for large-scale scattering simulations with complex geometries in three dimensions. Another key issue in the numerical solution of electromagnetic scattering problems is using a mechanism to perform the absorption of outgoing waves. Two perfectly matched layers are discussed, optimized and compared in a high-order discontinuous Galerkin framework.
The numerical solution of Euler equations of gas dynamics is also very sensitive to geometry description. Using a discontinuous Galerkin formulation and linear isoparametric elements, a spurious entropy production may prevent convergence to the correct solution. With NEFEM, the exact imposition of the solid wall boundary condition provides accurate results even with a linear approximation of the solution. Furthermore, the exact boundary representation allows using coarse meshes, but ensuring the proper implementation of the solid wall boundary condition. An attractive feature of the proposed implementation is that the usual routines of a standard FE code can be directly used, namely routines for the computation of elemental matrices and vectors, assembly, etc. It is only necessary to implement new routines for the computation of numerical quadratures in curved elements and to store the value of shape functions at integration points.
Several curved FE techniques have been proposed in the literature. In this thesis, NEFEM is compared with some popular curved FE techniques (namely isoparametric FEs, cartesian FEs and p-FEM), from three different perspectives: theoretical aspects, implementation and performance. In every example shown, NEFEM is at least one order of magnitude more accurate compared to other techniques. Moreover, for a desired accuracy NEFEM is also computationally more efficient. In some examples, NEFEM needs only 50% of the number of degrees of freedom required by isoparametric FEs or p-FEM. Thus, the use of NEFEM is strongly recommended in the presence of curved boundaries and/or when the boundary of the domain has complex geometric details.
Coe, David H. "Skinning engineering models with non-uniform, hierarchical B-spline surfaces." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09052009-040656/.
Full textBooks on the topic "Non Uniform Rational B-Splines"
Hong, Qin. D-NURBS: dynamic non-uniform rational B-splines. Toronto: University of Toronto, Dept. of Computer Science, 1995.
Find full textUrso, Agostino. Rappresentazione e cultura digitale: Da Cartesio alle "Non Uniform Rational Bézier-Splines". Reggio Calabria: Laruffa, 2004.
Find full textHong, Qin. D-NURBS: Dynamic non-uniform rational B-splines. 1995.
Find full textBook chapters on the topic "Non Uniform Rational B-Splines"
Zhang, Xingchen, Rejish Jesudasan, and Jens-Dominik Müller. "Adjoint-Based Aerodynamic Optimisation of Wing Shape Using Non-uniform Rational B-Splines." In Computational Methods in Applied Sciences, 143–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89890-2_10.
Full textFisher, T. R., and R. Q. Wales. "Three Dimensional Solid Modeling of Geo-Objects Using Non-Uniform Rational B-Splines (NURBS)." In Three-Dimensional Modeling with Geoscientific Information Systems, 85–105. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2556-7_9.
Full textRuiu, Jeremy, Guillaume Caumon, Sophie Viseur, and Christophe Antoine. "Modeling Channel Forms Using a Boundary Representation Based on Non-uniform Rational B-Splines." In Lecture Notes in Earth System Sciences, 581–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32408-6_127.
Full textIncesu, Muhsin, Sara Yilmaz Evren, and Osman Gursoy. "On the Bertrand Pairs of Open Non-Uniform Rational B-Spline Curves." In Springer Proceedings in Mathematics & Statistics, 167–84. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-8177-6_11.
Full textShi, Xianghang, Jing Liu, Jingzhou Xu, and Mingli Lu. "A Lung Segmentation Method Based on an Improved Convex Hull Algorithm Combined with Non-uniform Rational B-Sample." In Lecture Notes in Computer Science, 311–19. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09726-3_28.
Full textQu, Ruibin, and John A. Gregory. "A Subdivision Algorithm For Non—Uniform B—Splines." In Approximation Theory, Spline Functions and Applications, 423–36. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2634-2_30.
Full textMontemurro, Marco, Thibaut Rodriguez, Paul Le Texier, and Jérôme Pailhès. "Multi-Displacement Requirement in a Topology Optimization Algorithm Based on Non-uniform Rational Basis Spline Hyper-Surfaces." In Advances in Mechanics and Mathematics, 223–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90051-9_9.
Full textKermarrec, Gaël, Vibeke Skytt, and Tor Dokken. "LR B-Splines for Representation of Terrain and Seabed: Data Fusion, Outliers, and Voids." In Optimal Surface Fitting of Point Clouds Using Local Refinement, 57–80. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16954-0_5.
Full text"Surrogate Modeling with Non-Uniform Rational B-splines." In Advances in Computers and Information in Engineering Research, Volume 1, 345–75. ASME Press, 2014. http://dx.doi.org/10.1115/1.860328_ch14.
Full textBeinstingel, A., M. Heider, B. Pinnekamp, and S. Marburg. "Gear mesh excitation and non-uniform rational B-splines." In International Conference on Gears 2022, 91–102. VDI Verlag, 2022. http://dx.doi.org/10.51202/9783181023891-91.
Full textConference papers on the topic "Non Uniform Rational B-Splines"
Fiasconaro, James G., and David S. Maitiand. "Non-Uniform Rational B-Splines." In Computer Graphics Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/870877.
Full textDavenport, Thomas L. R. "Non-uniform-rational-B-splines (NURBS) in illumination design." In Frontiers in Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/fio.2003.tuw2.
Full textYau, Hong-Tzong, and Kuei-Wu Chen. "General Form Tolerance Evaluation Using Non-Uniform Rational B-Splines." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/dac-1048.
Full textTurner, Cameron J., and Richard H. Crawford. "Adapting Non-Uniform Rational B-Spline Fitting Approaches to Metamodeling." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85544.
Full textIbrahim, Abdul Rahman, Siti Mariyam Shamsuddin, and Aida Ali. "Improving Non-Uniform Rational B-splines' Knot Removal with Particle Swarm Optimization." In 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization (CGIV). IEEE, 2009. http://dx.doi.org/10.1109/cgiv.2009.95.
Full textSilbermann, M. J., P. V. Sankar, and L. A. Ferrari. "Implementation of non uniform rational B-splines (NURBs) using a derivative recurrence." In Twenty-Third Asilomar Conference on Signals, Systems and Computers, 1989. IEEE, 1989. http://dx.doi.org/10.1109/acssc.1989.1201059.
Full textWessels, Francois J. L., G. Venter, and T. W. Von Backström. "An Efficient Scheme for Describing Airfoils Using Non-Uniform Rational B-Splines." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69468.
Full textPushkin, Sergey V., Guennady I. Podoprigora, Laurent Comas, Hatem Boulahdour, Jean-Claude Cardot, Michel Baud, Yaroslav R. Nartsissov, and Oleg Blagosklonov. "A Computational Model of Rat Cerebral Blood Flow using Non-Uniform Rational B-splines." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4352487.
Full textSingh, Aditya Kumar, Anuj Aggarwal, Manik Vashisht, and Rajesh Siddavatam. "Robot motion planning in a dynamic environment using offset Non-Uniform Rational B-Splines (NURBS)." In 2011 IEEE International Conference on Industrial Technology (ICIT 2011). IEEE, 2011. http://dx.doi.org/10.1109/icit.2011.5754393.
Full textMashrouteh, Shamim, Ahmad Barari, and Ebrahim Esmailzadeh. "Flow-Induced Nonlinear Vibration of Non-Uniform Nanotubes." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68208.
Full textReports on the topic "Non Uniform Rational B-Splines"
Yapp, Clifford W. An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry. Fort Belvoir, VA: Defense Technical Information Center, December 2015. http://dx.doi.org/10.21236/ada624518.
Full text