Dissertations / Theses on the topic 'Non regular contact dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 30 dissertations / theses for your research on the topic 'Non regular contact dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Larousse, Paul. "Modélisation d'interface endommageable en dynamique explicite dédiée au démoulage de pneumatiques." Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0098.
Full textThe tire is a complex product subjected to numerous constraints, and the designer must find a compromise between cost, performance, safety and recyclability. It is composed of a multitude of overlayed layers of different materials, resulting in complex behaviors. Thus, numerical simulation is an obvious choice by allowing the study of a wide range of scenarios. It enables to study the impact of each manufacturing step, and in particular the unmolding tire process, which inspired this thesis. This non-regular problem is associated to contact and damage, described by a cohesive zone model, with fast dynamics phenomena, rarely combined together in simulation. Since the problem is a transient dynamics one, the choice of an explicit time integrator is natural. The proposed idea here is the use of an explicit symplectic scheme providing by definition good energy properties and discrete equations conservation. Based on previous work, the explicit CD-Lagrange scheme is chosen. Thus, the study is focused on the contact interface between a deformable solid and a rigid one. A method for solving interface problems in dynamics is presented. A thermodynamic and explicit resolution framework is then proposed, with local treatment of non-linearities and non-regularities leading to a matrix-free resolution algorithm. Formulations are based on the thermodynamic framework of generalized standard materials and non-regular mechanics. Next, the focus is set on the thermodynamic evolution laws by studying temporal non-locality in order to limit the damage localization on the interface. Delayed-effect models are then introduced. The modular aspect of the proposed resolution is shown, with application of several interface laws and bulk behaviors. Application to large transformation contact problems is also provided. Finally, the feasibility of the approach is demonstrated by its integration into a semi-industrial code, MEF++
Wang, Zhaoxin. "Dynamics of Mechanical System Involving Conformal and Non-conformal Contact." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/222.
Full textShahzamanian, Sichani Matin. "Wheel-rail contact modelling in vehicle dynamics simulation." Licentiate thesis, KTH, Spårfordon, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127949.
Full textQC 20130911
Shahzamanian, Sichani Matin. "On Efficient Modelling of Wheel-Rail Contact in Vehicle Dynamics Simulation." Doctoral thesis, KTH, Spårfordon, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181691.
Full textQC 20160202
Votsios, Vasilis. "Contact mechanics and impact dynamics of non-conforming elastic and viscoelastic semi-infinite or thin bonded layered solids." Thesis, Loughborough University, 2003. https://dspace.lboro.ac.uk/2134/11815.
Full textHedman, Stefan. "Smooth and non-smooth approaches to simulation of granular matter." Thesis, Umeå universitet, Institutionen för fysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-50584.
Full textDiallo, Moustapha. "Wetting on heterogeneous metal-oxides regular patterned surfaces by a non-reactive liquid metal." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC004/document.
Full textIn hot-dip galvanizing, steel sheets are protected against corrosion by a thin layer of zinc obtained by immersion in a zinc alloy bath. Before this process, the steel sheets undergo recrystallization annealing to eliminate stresses after cold-rolling. The annealing conditions used reduce the native iron oxide film, which promotes the wettability of the steel surface with liquid zinc. However, new high-strength steels contain significant quantities of addition elements, such as silicon and manganese. These elements diffuse on the surface of the steel sheets during recrystallization annealing and form oxide particles or films by selective external oxidation. If pure iron is well wet with liquid zinc, these oxides are not and their presence on the surface can lead to defects in the final coating.To study the influence of oxide size and their distribution on liquid metal wetting, we studied a non-reactive wetting of liquid lead on a heterogeneous Fe / silica textured surface using the dispensed technique.These surfaces were designed by plasma-assisted chemical vapour deposition followed by a photolithographic process.After impact, the drop extends to its maximum spreading diameter. This is followed by a phase of drop receding. During this, the drop is more or less retained, depending on the silica coverage rate, on the pure iron: stick-slip motion. On surfaces with low silica content, this phenomenon causes a deformation of the drop shape which is more elongated in one direction and sometimes at the division of the drop.We showed that wetting is mainly affected by the surface fraction of silica.Finally, we modelled the different phases of drop spreading on these heterogeneous surfaces. Literature models were reviewed and adapted and macroscopic models of the oscillation of the drop during its spreading were proposed
Dia, Seydou. "Modélisation d'un contact dynamique non-linéaire : application au développement et à l'optimisation de modalsens." Phd thesis, Université de Haute Alsace - Mulhouse, 2010. http://tel.archives-ouvertes.fr/tel-00683067.
Full textSundar, Sriram. "Impact damping and friction in non-linear mechanical systems with combined rolling-sliding contact." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1386245045.
Full textAHMED, RIZWAN. "Experimental Investigation Of Non-Linear Structural Dynamics of Shrouded Turbine Blade." Doctoral thesis, Politecnico di Torino, 2022. https://hdl.handle.net/11583/2972153.
Full textBRUZZONE, FABIO. "2D/3D Nonlinear and Non-Hertzian Tooth Deflection Analysis for Compliant Gear Dynamics." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2847142.
Full textDuran, Celio. "Modélisation du comportement dynamique non-linéaire et transitoire de turbomoteur avec multitouches rotor/stator." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0144.
Full textThis PhD thesis deals with the nonlinear transient dynamic response of rotor/stator assemblies in the case of multi-contacts, it is applied on Turbomeca’s helicopter turbo-engine. In order to improve gas turbine performances, constructors have to reduce rotor/stator clearances, while continuing to maintain component’s reliability, durability and safety. It implies the development of models to predict and control unsafe situations as, rotor/stator interactions between fixed and rotating parts, mainly triggered by a blade-loss in helicopters turbo-engine case. The first part of this document is concerned with a bibliographical summary of the main physical phenomena observed after a rotor/stator interaction, this is supported by experiments and numerical calculations. A review of the various sliding contact numerical models is presented. The duality between time and/or frequency simulation response methods as, harmonic balance method vs Newmark time integration scheme is discussed. Then two numerical tools for frequency domain analysis are described: the spectrogram to analyze frequency spectrum as a function of the time, the full-spectrum for analyzing the rotor whirl motions. The second part is focused on the time response simulation of some academic systems: an excited oscillator with two end-stops, a Jeffcott rotor and finally a 3 disks rotor both subjected to disk/casing interactions. Given the transient behavior exhibited by turbo-engine rotors following a rotor/stator contact, the purpose is to test several step-by-step time integration scheme combined with different contact laws. This analysis has shown that the Newmark scheme with constant acceleration used with damped contact penalty laws combined to stiffness and damping coefficients smoothed by arctangent functions are relevant. The rotor bending modeling during transient motion considering possible multi-contacts with the stator is realized using the finite element method and the previously reviewed contact modeling methods. The simulation is implemented under Matlab environment and is named ToRoS. (Rotor/Stator Touch). Finally, the developed modeling is applied to the Ardiden 1H turbo-engine. The ToRoS software is used to predict the transient dynamic response of the free power turbine subjected to multi-contacts, after a sudden blade-loss which is modeled by a sudden unbalance. Contact laws are applied and depend on contact type and location: disk/casing, seals, thrust bearing. Depending on the mass unbalance level, the speed of rotation, the contact and friction parameters, the rotor can be in a quasi-permanent contact state in forward whirl while the rotation speed is running-down
Phan, Thanh-Luong. "Etude des structures en maçonnerie du génie civil par la méthode des éléments discrets : apports de la méthode "Non Smooth Contact Dynamics"." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS243.
Full textAlthough it is an old construction technique, masonry is still world wide spread nowadays. It uses two main components: blocks and joints, which can be filled with mortar. The resulting material can be considered as continuous or discontinuous, according to the relative performances of the blocks and joints. The blocks are often made of stone, raw earth or brick. The mortars generally incorporate lime or cement or a mixture of those components. Since the discovery of modern concrete during the XIXth century, calculations have been performed in the framework of continuous methods, and the masonry design technics have not fully benefited from the scientific breakthrough, nor from the development of calculation tools used in design offices. Following this evolution, masonry lost some ground in the construction field, and methods and means used for the design of buildings have not been improved enough. In this context, the present work aims at contributing to the calculation of masonry structures, considered as discontinuous structures, with the ultimate goal to be of some use in the field of industry and architecture.The structure or material study scale: general behavior of the building, behavior of a masonry panel, or behavior of the bonding between the blocks and the mortar, or the block-block contacts for dry friction masonry, leads to the use of several theoretical frameworks, and associated analytical or numerical methods. After an analysis of the pros and cons of the different available methods, in the fields of mechanics and architecture (stereotomy), we will present in detail the Non Smooth Contact Dynamics method. This method, initiated at the end of the XXth century, by Jean-Jacques MOREAU et Michel JEAN, describes theoretically, the conditions of the development of contact forces between solids, whether able to support strains or rigid, in 2D or 3D, under the effects of shocks, large displacements or rotations. The conditions of no overlapping between the bodies are described by equations developed using the convex analysis concepts. We chose this theoretical framework, and used the software platform developed on these concepts, for modeling realistic structures that are modern, because they allow to take into account 3D structures with complex and efficient geometries (aesthetic point of view, economy of material), subjected to dynamical loads, and including the sequential set-up of pre-stressing technics.The example of the Ridolfi stair case is used as a support for the examination of several optimization parameters for the calculation performed on the LMGC90 open software, allowing the modeler to supervise in detail several steps of the performed non-linear calculations. The calculation parameters of which we have tested the influence are: the time step, convergence criterion, the iteration number considered in the Gauss-Siedel algorithm, the shrinkage criterion, the friction coefficient between blocks, and the pre-stressing strain applied in the post tension cables. The experiment carried out on a real size physical model is numerically simulated, and the consistency of the computed results is discussed.The work was carried out in the Mechanics and Civil Engineering Laboratory of the University of Montpellier II and the CNRS (French National Scientific Research Agency), and the Laboratory of Industrial Environment Engineering of Alès School of Mines. The funding was provided by the Ministry of Education and Training of Vietnam, and ARMINES
Lapillonne, Suzanne. "Modélisation multi-échelles des laves torrentielles avec un modèle numérique couplé solide-fluide." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI034.
Full textDebris flows, i.e. rapid movements of a mixture of solid and fluid on steep terrain, pose significant risks to inhabited mountainous areas. Accurate modelling is crucial for effective risk mapping and to define relevant mitigation strategies in these regions. While there's enthusiasm in the community for debris flow modelling, only few models have used surge-scale data from real field measurements for calibration and validation at various scales. This Ph.D. thesis aims to conceptualise a field-driven coupled solid-fluid model for alpine debris flow surges at the surge scale. The numerical modelling in this study employs the hybrid model DualSPHysics, which uses the Lagrangian Smoothed Particles Hydrodynamics (SPH) method for fluid modelling and fully couples it with the solid dynamics solver ProjectChrono.After an introduction of the state-of-the-art in debris flow research and a presentation of the numerical methods, the work is divided in three interlocked sections. First, we focus on field data exploration by presenting a protocol for the processing of debris flow surge data. The outputted data on debris flow surges, processed from the monitoring station of the Réal torrent (South East France) will then feed the numerical model.Secondly, a simplified model is introduced. The front of the surges are represented in 2D featuring polydisperse boulders and a viscous Newtonian fluid. The model is rigorously validated against experimental data and empirical considerations.Thirdly, the model increases in complexity by adding a non-Newtonian rheology to the interstitial fluid.The work shows that such models are able to represent debris flow motion with field-like features
Ponthus, Nicolas. "Contact sec glisssant sous faible charge : de la topographie des surfaces à la dynamique des solides de l'interface." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC021/document.
Full textThis PhD thesis addresses the issue of the dynamics, normal to the interface, of a dry steady-sliding contact between two random topographies under weak normal load. In this context, the motion of a slider under its own weight has been studied experimentally. Measurements, using a laser vibrometer, of the normal displacement and velocity of the slider confirm the existence of a transition, as the sliding speed increases, from a regime of permanent contact to a regime of lift-offs, shocks and rebounds.At low speed, the normal motion is due to a geometrical filtering of the topographies, the statistical and spectral properties of which have been described. The roles of the roughness, including its spectral breadth and correlation length, and of the apparent contact area have been identified and analyzed. Those results have been reproduced not only using numerical models, but also using analytical ones based on the extreme value theory. Bouncing-Ball-like models, the excitation of which is assumed to be given by the geometrical filtering, have also been implemented and match with a broad range of experimental observations in dynamical regime, from the transition to vibro-impacts.To test some of the hypothesis of the models, a new experimental multi-channel slider has been designed and has enabled access to the spatial localization of the transient micro-contacts between the antagonists surfaces. It has been shown that micro-contacts are governed by a characteristic length at low sliding speed and by a characteristic time at high speed. The rotational motion of the slider also increases with sliding speed, changing the micro-contact distribution along the surface of the slider
Ragueneau, Quentin. "Méthodologie d'optimisation paramétrique appliquée à la dynamique vibratoire intégrant des non-linéarités localisées." Electronic Thesis or Diss., Paris, HESAM, 2024. http://www.theses.fr/2024HESAC014.
Full textVibration analysis can be critical for the optimal design of complex assembled structures. Integrating nonlinear phenomenon, especially at the interfaces between substructures, allows for high-fidelity numerical simulations. However, the computational cost makes it impractical to use classical global parametric optimization methods for industrial nonlinear structures. The work aims to study a comprehensive strategy for constrained parametric optimization applied to industrial vibrating structures exhibiting local nonlinearities. The proposed strategy mainly relies on two tools. First, a dedicated mechanical solver based on the Harmonic Balance Method and a pseudo-arclength continuation procedure is used for the dynamic simulations. Then, this mechanical solver is employed for the construction and enrichment of a Gaussian Process surrogate model within a Bayesian Optimization framework in order to limit the number of solver calls. The strategy is applied to unconstrained optimization of a Duffing oscillator and the constrained optimization of a gantry crane with contact nonlinearities. The results obtained suggest the feasibility of deploying the strategy in an industrial setting
Di, Stasio Jean. "The CD-Lagrange scheme, a robust explicit time-integrator for impact dynamics : A new singular mass formulation, and an extension to deformable-deformable contact." Thesis, Lyon, 2021. http://www.theses.fr/2021LYSEI029.
Full textTyres are complex structures to simulate. The materials are heterogeneous and incompressible with non-linear responses. The geometry goes to the millimetre scales for tread patterns. For a finite elements simulation a precise mesh is then required. The model has then a large number of degrees of freedom and non-linear material laws. In dynamics, the simulation becomes even more challenging especially with impacts. Nevertheless it is crucial in the tire design process because it brings a deeper comprehension of the tire and avoids test on real structures. The explicit time-integration make feasible the impact simulations. They handle easily the non-linearities with a very low computational cost for a time-step. Merged with a precise contact formulation, they form robust, accurate and efficient schemes for addressing impact simulations. This work aims to choose and improve an explicit scheme for non-linear dynamics with impacts. The first part is a benchmark for selecting a scheme and enhance its possibilities of improvement. The selected one is the CD-Lagrange: an explicit scheme based on central difference method, a contact enforcement by Lagrange multipliers, and a contact condition on velocity. Two mains improvements are identified and explored. Firstly, the energy conservation at impact would make the scheme symplectic for deformable bodies. Secondly the formulation must be enlarged to deformable–deformable contact. The second part aims then to achieve the conservation of energy by adapting the singular mass matrix to the CD-Lagrange. The formulation is firstly built in 1D, and shows a major improvement for the energy balance. Then two possible extensions are explored for the 3D cases. The third part presents the CD-Lagrange scheme with a mortar formulation for deformable-deformable contact. It handles with stability and accuracy large sliding and friction. An acceleration technique is proposed for solving the contact problem, without any loss of accuracy
Bondoky, Karim [Verfasser], Klaus [Gutachter] Janschek, and Stefanos [Gutachter] Fasoulas. "A Contribution to Validation and Testing of Non-Compliant Docking Contact Dynamics of Small and Rigid Satellites Using Hardware-In-The-Loop Simulation / Karim Bondoky ; Gutachter: Klaus Janschek, Stefanos Fasoulas." Dresden : Technische Universität Dresden, 2020. http://d-nb.info/122783313X/34.
Full textHmid, Abdelhak. "Dynamique d’équipements avec des non linéarités de liaisons localisées : Application aux systèmes optiques d’éclairage." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI139.
Full textThe thesis deals with the prediction of nonlinear dynamic behavior of automotive headlamps. The attention is focused on building models to estimate the vibration behavior of lighting system to enhance its durability and comfort of vision. Vibration tests show that high levels of vibration damage projector components and degrade the stability of the illuminating beam. To avoid these issus, headlamps design must be adapted to include nonlinear phenomena provided from the joints connecting the reflector and housing subsets. The state of the art is performed on the non-linear dynamic behavior, models and methods and existing estimators quantifying nonlinearities. The modal tests performed demonstrate the presence of non-linear phenomena (clearance, friction, stick-slip, …) located in reflector-housing joints. Experimental investigations carried out on joints show different types of nonlinear behavior and help to identify the most important contact parameters (stiffness and damping). The limits of validity of the linear models are determined by empirically formulated criteria. Selected nonlinear models are integrated in a 1D-model reduced to one then two degrees of freedom of a projector. The representativeness of the model is evaluated basing of modal measurement of headlamp. The Harmonic Balance Method was used to calculate the periodic response. The algorithm calculates also the stability of the periodic solutions found, using Floquet theory, and follows stable or instable branches versus varying system parameters via the arc-length continuation technique. Finally, harmonic responses are predicted with a finite element model of the entire headlamp. The calculations are based on the identification of modes that are based on the weight distribution in the structures and joints proprities. Sensibility studies are carried out on stiffness and preloaded contact, coefficient of friction and damping. Impacts on the vibration levels were quantified that leads to update the finite element model and improve modal and harmonic results of headlamp
Martin, Sylvain. "Contribution à la modélisation du frittage en phase solide." Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP2144/document.
Full textThis thesis deals with the simulation of the sintering of nuclear fuel on a pellet scale. The goal is to develop numerical tools which can contribute to a better understandingof the physical phenomena involved in the sintering process. Hence, a multi scale approach is proposed. First of all, a Discrete Element model is introduced. It aims at modeling the motion of particles on a Representative Elementary Volume scale using an original Discrete Element Method. The latter is a Non Smooth Method called Contact Dynamics. Recently, there have been numerous papers about the simulation of sintering using Discrete Element Method. As far as we know, all these papers use smooth methods. Different studies show that the results match well experimental data. However, some limits come from the fact that smooth methods use an explicit scheme which needsvery small time steps. In order to obtain an acceptable time step, the mass of particles have to be dramatically increased. The Non Smooth Contact Dynamics uses an implicit scheme, thus time steps can be much larger without scaling up the mass of particles. The comparison between smooth and non smooth approaches shows thatour method leads to a more realistic representation of rearrangement. An experimental validation using synchrotron X-Ray microtomography is then presented, followedby a parametric study on the sintering of bimodal powders that aims at showing the capacity of this model.The second part presents a mechanical model on the sub-Granular scale, using a Finite Element method. This targets a better understanding of the behavior of twograins in contact. The model is currently being developped but the first results already show that some parameters like the shape of the surface of the neck are very sensitive.In the future, the Non smooth Contact Dynamics model of sintering may be improvedusing the results obtained by the sub-Granular scale mechanical model
Cao, Hong-Phong. "Modélisation par éléments discrets rigides et/ou déformables des milieux granulaires et des troisièmes corps solides : Influence du comportement local sur le comportement global." Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0045/document.
Full textThe Discrete Element Methods are the most appropriate methods to model the divided feature of some media such as granular ones, masonries or contact interfaces... Many studies have provided a better understanding of their behavior, but in some cases the impact of both volume description (rigid or deformable) and interaction laws (elastic or plastic) is not negligible on the global behavior. The approach used here is based on the "Non Smooth Contact Dynamic" framework which mixes naturally the rigid and deformable formulations. One propose to analyze the influence of this description. For this purpose, two different applications are used, related to the quasi-static behavior of granular media and to the modelization of the tribological interface under dynamic solicitations.The study of quasi-static behavior of granular media is developed though biaxial compression test and shear test. Contrary to classical approaches, deformable particles are used. The results are compared using tools such as the stress-strain macroscopic relation, the compacity... They show that it is not possible to converge to deformable particle with a rigid description and underline the importance to performance full analyze with deformable description.The modeling of a tribological interface under dynamic solicitation focuses on the influence of boundary conditions, models of the first bodies and the third body on the rheology of the interface. In each simulation, the macroscopic friction, the velocity profile and stress profile are observed. The different models used have not a large influence on the friction value but a large influence on the velocity profiles. This underline the importance of the choice of the model when investigation are performed on the rheology of the third body
Meksi, Olfa. "Contribution à la caractérisation numérique et expérimentale des échanges thermiques externes des machines électriques totalement fermées et non ventilées avec introduction des données d’incertitudes." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2367/document.
Full textIn addition to electrical, magnetic, vibro-acoustic and mechanical aspects, thermal considerations must be taken into account during the design and optimization of electrical machines. This study focuses on the analysis and the simulation of the thermal behavior of Totally Enclosed Non Ventilated (TENV) electric machines, specifically a Synchro-reluctant motor (Synchrel) in the context of an automotive application : a clutch actuator. A detailed thermal model (MTD) describing the thermal behavior of the Synchrel machine is designed. This proposed MTD is based on a combination of the Lumped Parameter Thermal Network method (LPTN) and the Computational Fluid Dynamics (CFD) methods. The first method is dedicated to model the conductive and radiative heat transfers. CFD techniques are dedicated to model the cooling mechanism based on the natural convection around the Synchrel machine. Since the critical temperature is very sensitive to the cooling mode, the CFD approach is used in this study to provide more accurate results. On the other hand, it requires considerable computing time, which prevents its use in design studies based on optimization methods. In order to overcome this problem, only some numerical results obtained for particular operating points are used to define an analytical correlation based on the numerical calculation relations. This numerical analysis goes with an experimental approach in order to elaborate the corresponding experimental correlations. This study shows that numerical solutions can present a good accuracy, if uncertainty data introduced by this approach are taken into account. The second research problem addressed in this study is the determination of the Contact Thermal Resistances (RTCs), which are key parameters in the definition of the MTD. The determination procedure of the RTCs is based on two parametric identification approaches. The first one is experimental and based on some observations of the thermal behavior of the machine. The second one is based on a mathematical model reduction approach. The determined values are consistent with results from literature, although the Synchrel machine differs in topology, size and power. Using the numerical correlations, the MTD is used to evaluate the temperature deviation due to error terms introduced by the CFD approach. Then, using these experimental correlations, the MTD’s quality can be checked and approved. Parametric identification approaches lead to the construction of two secondorder thermal models of the machine. These models allow monitoring the thermal behavior of the winding and the casing. Both simplified models show satisfactory predictability with respect to their great simplicity
Saint-Cyr, Baptiste. "Modélisation des matériaux granulaires cohésifs à particules non convexes : Application à la compaction des poudres d'UO2." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2011. http://tel.archives-ouvertes.fr/tel-00660146.
Full textHoang, Thi Minh Phuong. "Optimisation des temps de calculs dans le domaine de la simulation par éléments discrets pour des applications ferroviaires." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2011. http://tel.archives-ouvertes.fr/tel-00726199.
Full textPezzotti, Simone. "DFT-MD simulations and theoretical SFG spectroscopy to characterize H-Bonded networks at aqueous interfaces : from hydrophobic to hydrophilic environments Structural definition of the BIL and DL: a new universal methodology to rationalize non-linear χ(2)(ω) SFG signals at charged interfaces, including χ(3)(ω) contributions What the Diffuse Layer (DL) Reveals in Non-Linear SFG Spectroscopy 2D H-Bond Network as the Topmost Skin to the Air-Water Interface Combining ab-initio and classical molecular dynamics simulations to unravel the structure of the 2D-HB-network at the air-water interface 2D-HB-Network at the air-water interface: A structural and dynamical characterization by means of ab initio and classical molecular dynamics simulations Spectroscopic BIL-SFG Invariance Hides the Chaotropic Effect of Protons at the Air-Water Interface Molecular hydrophobicity at a macroscopically hydrophilic surface Graph theory for automatic structural recognition in molecular dynamics simulations DFT-MD of the (110)-Co3O4 cobalt oxide semiconductor in contact with liquid water, preliminary chemical and physical insights into the electrochemical environment." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLE008.
Full textImproving our knowledge on water H-Bonded networks formed in the special environment offered by an interface is pivotal for our understanding of many natural phenomena and technological applications. To reveal the interfacial water arrangement, techniques able to provide detailed microscopic information selectively for the interfacial layer are required. In the present thesis work, we have hence investigated aqueous interfaces at the molecular level, by coupling theoretical modeling from DFT-MD simulations with SFG & THz-IR spectroscopies. By developing new investigation protocols/tools, coupling DFT-MD simulations and SFG spectroscopy, in particular for the more complex rationalization of charged interfaces, we have provided a global comprehension of the effect of various interfacial conditions (hydrophilicity, pH, ionic strength) on the HB-Network formed in the interfacial layer (BIL), on its spectroscopic signatures and on its impact on physico-chemical properties. We have shown for the first time that, in sufficiently hydrophobic conditions, BIL interfacial water creates special 2-Dimensional HB-Networks, experimentally revealed by one specific THz-IR marker band. Such 2D-network dictates HBs and orientational dynamics of interfacial water, surface potential, surface acidity, water surface tension and thermodynamics of hydration of hydrophobic solutes. Such "horizontal ordering” of water at hydrophobic interfaces is found opposite to the “vertical ordering” of water at hydrophilic interfaces, while coexistence of the two orders leads to disordered interfacial water in intermediate hydrophilic/hydrophobic conditions. Both DFT-MD and SFG further revealed how ions & pH conditions alter these BIL-water orders
Patterson, Colin. "Reducing the contact time of impinging droplets on non-wetting surfaces." Thesis, 2015. https://hdl.handle.net/2144/15707.
Full textBondoky, Karim. "A Contribution to Validation and Testing of Non-Compliant Docking Contact Dynamics of Small and Rigid Satellites Using Hardware-In-The-Loop Simulation." 2020. https://tud.qucosa.de/id/qucosa%3A73251.
Full textRoy, Durbar. "Experimental and Theoretical Insights into Impact Phenomena of Small Scale Liquid Interfacial Systems." Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6128.
Full textHegde, Abhijit. "Mechanics of cutting in granular media." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5828.
Full textIISc, DBT
Kim, Minjung active 21st century. "Ab initio simulation methods for the electronic and structural properties of materials applied to molecules, clusters, nanocrystals, and liquids." Thesis, 2014. http://hdl.handle.net/2152/25099.
Full texttext