To see the other types of publications on this topic, follow the link: Non-polar.

Journal articles on the topic 'Non-polar'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Non-polar.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

J K Pendharkar, J. K. Pendharkar, and Veena Khilnani. "Acoustic Parameters of Polar- Non polar Chemicals at Variable Frequencies." Indian Journal of Applied Research 3, no. 7 (October 1, 2011): 588–90. http://dx.doi.org/10.15373/2249555x/july2013/186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahmed, Hameed M., and Shuja-Aldeen B. Aziz. "Dielectric Properties of Commercial non-Polar Polymers." Journal of Zankoy Sulaimani - Part A 11, no. 1 (April 10, 2008): 1–8. http://dx.doi.org/10.17656/jzs.10175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boytsova, O., I. Dovgaliuk, D. Chernyshov, A. Eliseev, P. O'Brien, A. J. Sutherland, and A. Bosak. "Polar and non-polar structures of NH4TiOF3." Journal of Applied Crystallography 52, no. 1 (February 1, 2019): 23–26. http://dx.doi.org/10.1107/s1600576718016606.

Full text
Abstract:
Ammonium oxofluorotitanate, NH4TiOF3, is probably the best known precursor for the synthesis of anatase mesocrystals. Transformation of NH4TiOF3 into TiO2 through thermal decomposition, accompanied by hydrolysis, preserves some structural features of the precursor. Currently, any discussion of the mechanism of this transformation is difficult, as the exact crystal structure of the starting compound is not available and no intermediate structures are known. This article describes the outcome of single-crystal and powder X-ray diffraction studies, revealing the existence of two polymorphs of the parent NH4TiOF3 at different temperatures. A second-order phase transition from the polar Pca21 α phase (1), stable at room temperature, to the Pma2 β phase (2) above ∼433 K has been demonstrated. The direction of the pseudo-fourfold axis in NH4TiOF3 coincides with the orientation of the fourfold axis of anatase mesocrystals, consistent with a topotactical transformation.
APA, Harvard, Vancouver, ISO, and other styles
4

Dongmo Foumthuim, Cedrix J., Manuel Carrer, Maurine Houvet, Tatjana Škrbić, Giuseppe Graziano, and Achille Giacometti. "Can the roles of polar and non-polar moieties be reversed in non-polar solvents?" Physical Chemistry Chemical Physics 22, no. 44 (2020): 25848–58. http://dx.doi.org/10.1039/d0cp02948c.

Full text
Abstract:
Using thermodynamic integration, we study the solvation free energy of 18 amino acid side chain equivalents in solvents with different polarities, ranging from the most polar water to the most non-polar cyclohexane.
APA, Harvard, Vancouver, ISO, and other styles
5

Omini, M. "Permittivity of Polar Solutions in Non-Polar Solvents." IEEE Transactions on Electrical Insulation EI-20, no. 6 (December 1985): 965–73. http://dx.doi.org/10.1109/tei.1985.348737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kucharski, R., M. Zając, R. Doradziński, M. Rudziński, R. Kudrawiec, and R. Dwiliński. "Non-polar and semi-polar ammonothermal GaN substrates." Semiconductor Science and Technology 27, no. 2 (January 19, 2012): 024007. http://dx.doi.org/10.1088/0268-1242/27/2/024007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mahmoudinobar, Farbod, Zhaoqian Su, and Cristiano L. Dias. "Thermodynamic Stability of Polar and Non-polar Fibrils." Biophysical Journal 114, no. 3 (February 2018): 414a. http://dx.doi.org/10.1016/j.bpj.2017.11.2295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Engelhardt, H., R. Grüner, and M. Scherer. "The polar selectivities of non-polar reversed phases." Chromatographia 53, S1 (January 2001): S154—S161. http://dx.doi.org/10.1007/bf02490322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Kwang Soo, Kwang Ho Ahn, Jae Ro Park, and Hyun Jung Kim. "Development of Cellulosic Fiber Filter Using Replacement Liquid in Water-Swollen Fiber with Non-Polar Solvent." Journal of Korean Society of Environmental Engineers 35, no. 10 (October 30, 2013): 743–48. http://dx.doi.org/10.4491/ksee.2013.35.10.743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pykacz, Henryk, and Zbigniew Czapla. "Coexistence of polar and non-polar phases in ND4DSeO4crystals." Ferroelectrics Letters Section 7, no. 3 (May 1987): 61–65. http://dx.doi.org/10.1080/07315178708200516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Chao, and Gary Stevens. "The Dielectric Response of Polar and Non-Polar Nanodielectrics." IEEE Transactions on Dielectrics and Electrical Insulation 15, no. 2 (April 2008): 606–17. http://dx.doi.org/10.1109/tdei.2008.4483483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pauli, S. A., and P. R. Willmott. "Conducting interfaces between polar and non-polar insulating perovskites." Journal of Physics: Condensed Matter 20, no. 26 (June 9, 2008): 264012. http://dx.doi.org/10.1088/0953-8984/20/26/264012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

de Leeuw, S. W., C. P. Williams, and B. Smit. "Local compositions and thermodynamics of polar/non-polar mixtures." Fluid Phase Equilibria 48 (September 1989): 99–109. http://dx.doi.org/10.1016/0378-3812(89)80196-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Biegelsen, D. K., R. D. Bringans, and J. E. Northrup. "Heteroepitaxial growth of polar semiconductors on non-polar substrates." Materials Science and Engineering: B 14, no. 3 (August 1992): 317–31. http://dx.doi.org/10.1016/0921-5107(92)90315-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Reddy, Pramod, Isaac Bryan, Zachary Bryan, James Tweedie, Ronny Kirste, Ramon Collazo, and Zlatko Sitar. "Schottky contact formation on polar and non-polar AlN." Journal of Applied Physics 116, no. 19 (November 21, 2014): 194503. http://dx.doi.org/10.1063/1.4901954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rawat, Bachan S., and Indar B. Gulati. "Cohesive energy density of polar and non-polar liquids." Journal of Applied Chemistry and Biotechnology 27, no. 3 (May 29, 2007): 459–64. http://dx.doi.org/10.1002/jctb.5020270306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

S. Dodsworth, Elaine, and A. B. P. Lever. "Solvatochromism of non-polar complexes." Coordination Chemistry Reviews 97 (January 1990): 271–84. http://dx.doi.org/10.1016/0010-8545(90)80095-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Swinton, F. L. "Mixtures of non-polar molecules." Pure and Applied Chemistry 59, no. 1 (January 1, 1987): 35–44. http://dx.doi.org/10.1351/pac198759010035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yuan, Peihong, Mustafa Cemil Coskun, and Gerhard Kramer. "Polar-Coded Non-Coherent Communication." IEEE Communications Letters 25, no. 6 (June 2021): 1786–90. http://dx.doi.org/10.1109/lcomm.2021.3061650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Antol, Ivana, Mirjana Eckert-Maksić, Mario Vazdar, Matthias Ruckenbauer, and Hans Lischka. "QM/MM non-adiabatic decay dynamics of formamide in polar and non-polar solvents." Physical Chemistry Chemical Physics 14, no. 38 (2012): 13262. http://dx.doi.org/10.1039/c2cp41830d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nargund, Achala, and Asha C. S. "Analysis of flow of polar and non polar incompressible ferrofluids." JOURNAL OF ADVANCES IN PHYSICS 10, no. 2 (August 30, 2015): 2733–40. http://dx.doi.org/10.24297/jap.v10i2.1333.

Full text
Abstract:
In this paper, flow between two parallel plates is analyzed for both polar and non polar ferrofluids. Velocity is obtained without pressure gradient for polar fluid and with pressure gradient for non polar fluid. The solution of the spin velocity is found in terms of applied magnetic field and magnetic flux density for polar fluid. Shear stress is calculated for both polar and non polar ferrofluid.
APA, Harvard, Vancouver, ISO, and other styles
22

Depaepe, J. M., and J. P. Ryckaert. "Isomerization of 1,2-dichloroethane in polar and non-polar solvents." Chemical Physics Letters 245, no. 6 (November 1995): 653–59. http://dx.doi.org/10.1016/0009-2614(95)01039-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Li, Anyin, He Wang, Zheng Ouyang, and R. Graham Cooks. "Paper spray ionization of polar analytes using non-polar solvents." Chemical Communications 47, no. 10 (2011): 2811. http://dx.doi.org/10.1039/c0cc05513a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wang, Chen, Li-Ping Liu, and Charles M. Deber. "Helicity of hydrophobic peptides in polar vs. non-polar environments." Physical Chemistry Chemical Physics 1, no. 7 (1999): 1539. http://dx.doi.org/10.1039/a807445c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Oka, Asako, and Keisuke Tominaga. "Terahertz spectroscopy of polar solute molecules in non-polar solvents." Journal of Non-Crystalline Solids 352, no. 42-49 (November 2006): 4606–9. http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jonsson, Mats, Johan Lind, Gábor Merényi, and Trygve E. Eriksen. "Remote substituent effects on polar and non-polar covalent bonds." J. Chem. Soc., Perkin Trans. 2, no. 10 (1994): 2149–54. http://dx.doi.org/10.1039/p29940002149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kumar, Ashok, and Hitesh Borkar. "Flexoelectricity in Bulk and Nanoscale Polar and Non-Polar Dielectrics." Solid State Phenomena 232 (June 2015): 213–33. http://dx.doi.org/10.4028/www.scientific.net/ssp.232.213.

Full text
Abstract:
Piezoelectricity (PE) is defined as the polarization under homogeneous application of stress on polar/non-centrosymmetry/no-inversion symmetry dielectrics, whereas it has been commonly accepted that flexoelectricity (FLX) is the induced polarization due to strain gradient in any polar/nonpolar dielectrics, the latter effect is universal and can be generated in any materials under inhomogeneous stress. Flexoelectricity is inversely proportional to the size of materials and devices which further suggests that giant FLX effects may develop in nanoscale materials. Flexoelectricity represents the polarization due to strain gradient and have significant effects on the functional properties of nanoscale materials, epitaxial thin films, one-dimensional structure with various shape and size, liquid crystals, polymers, nanobio-hybrid materials, etc. Till late sixties, very few works on flexoelectricity have been reported due to very weak magnitude compared to piezoelectricity. Advancement in nanoscale materials and device fabrication process and highly sophisticated electronics with detection of data with high signal to noise ratio lead the scientists/researchers to get several orders of higher flexoelectric coefficients compared to the proposed theoretical limits. Recently, giant FLX have been observed in nanoscale materials and their magnitudes are six to seven orders larger than the theoretical limits. In this review article, we describe the basic mechanism of flexoelectricity, brief history of discovery, theoretical modeling, experimental procedures, and results reported by several authors for bulk and nanoscale ferroelectric and dielectric materials.
APA, Harvard, Vancouver, ISO, and other styles
28

Smedartchina, Z. "Photoisomerization through a “funnel” in polar and non-polar solvents." Chemical Physics Letters 113, no. 3 (January 1985): 307–10. http://dx.doi.org/10.1016/0009-2614(85)80266-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Evale, Dr Basavaraj G. "Reduction in fluorescence intensity and lifetime of Coumarin derivative MFBMC with an increase in temperature in non-polar and polar solvents." Indian Journal of Applied Research 4, no. 4 (October 1, 2011): 9–12. http://dx.doi.org/10.15373/2249555x/apr2014/166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Al-Tawhid, A. H., and D. P. Kumah. "Correlating polar distortions and interfacial charge at the polar/non-polar LaCrO3/SrTiO3 (001) interface." AIP Advances 10, no. 4 (April 1, 2020): 045132. http://dx.doi.org/10.1063/5.0002298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Monder, Hila, Leo Bielenki, Hanna Dodiuk, Anna Dotan, and Samuel Kenig. "Poly (Dimethylsiloxane) Coating for Repellency of Polar and Non-Polar Liquids." Polymers 12, no. 10 (October 21, 2020): 2423. http://dx.doi.org/10.3390/polym12102423.

Full text
Abstract:
The wettability of poly (dimethylsiloxane) (PDMS) coating on plasma-treated glass was studied at room temperature using polar and non-polar liquids. The wettability was investigated regarding the liquids’ surface tensions (STs), dielectric constants (DCs) and solubility parameters (SPs). For polar liquids, the contact angle (CA) and contact angle hysteresis (CAH) are controlled by the DCs and non-polar liquids by the liquids’ STs. Solubility parameter difference between the PDMS and the liquids demonstrated that non-polar liquids possessed lower CAH. An empirical model that integrates the interfacial properties of liquid/PDMS has been composed. Accordingly, the difference between the SPs of PDMS and the liquid is the decisive factor affecting CAH, followed by the differences in DCs and STs. Moreover, the interaction between the DCs and the SPs is of importance to minimize CAH. It has been concluded that CAH, and not CA, is the decisive attribute for liquid repellency of PDMS coating.
APA, Harvard, Vancouver, ISO, and other styles
32

Буртная, Инесса Анатольевна, Отар Отарович Гачечиладзе, Людмила Ивановна Ружинская, and Михаил Михайлович Мурашко. "Diffusion of polar and non-polar molecules in a polymer membrane." Eastern-European Journal of Enterprise Technologies 1, no. 6(67) (February 7, 2014): 17. http://dx.doi.org/10.15587/1729-4061.2014.20162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Literathy, P. "Polar and non-polar aromatic micropollutants in water (drinking-water) resources." Water Supply 1, no. 4 (June 1, 2001): 149–57. http://dx.doi.org/10.2166/ws.2001.0079.

Full text
Abstract:
Aromatic compounds are important contaminants that limit the intended uses of water resources. Both polar and non-polar substances, such as phenols, aromatic sulfonates, lignin-sulfonic acids, humic and fulvic substances (acids) and mono- and poly-aromatic hydrocarbons, their alkyl-substituted derivatives, respectively, are among the potential aromatic micropollutants. During the last 5 - 10 years, an analytical approach has been developed on the basis of total fluorescence measurement of the original water sample and its organic solvent (cyclohexane) extract. It has been demonstrated and verified that polar aromatic compounds fluoresce only in the original water sample, whereas non-polar (hydrophobic) compounds fluoresce in an organic solvent (e.g. cyclohexane) extract. During extraction, polar compounds remain in the water sample. This method has been used in a country-wide survey in drinking water aquifers, as well as in several environmental impact assessment studies, particularly for petroleum-related pollution. It is a very convenient method to determine the naturally occurring humic and fulvic substances in water and has proved to be an appropriate substitute of the infrared spectrophotometric method for oil pollution assessment in the environment, also having the advantage of signalling more harmful, toxic aromatic petroleum hydrocarbons.
APA, Harvard, Vancouver, ISO, and other styles
34

Chagarov, Evgueni A., and Andrew C. Kummel. "Formation mechanisms of polar and non-polar amorphous oxide–semiconductor interfaces." Surface Science 602, no. 13 (July 2008): L74—L78. http://dx.doi.org/10.1016/j.susc.2008.04.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ding, Yong, and Zhong Lin Wang. "Profile imaging of reconstructed polar and non-polar surfaces of ZnO." Surface Science 601, no. 2 (January 2007): 425–33. http://dx.doi.org/10.1016/j.susc.2006.07.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ichino, Toshihiro. "Dual-phase polymer electrolyte prepared from polar and non-polar latices." Colloids and Surfaces A: Physicochemical and Engineering Aspects 153, no. 1-3 (August 1999): 567–74. http://dx.doi.org/10.1016/s0927-7757(98)00478-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Parker, T. M., N. G. Condon, R. Lindsay, F. M. Leibsle, and G. Thornton. "Imaging the polar and non-polar surfaces of ZnO with STM." Surface Science 415, no. 3 (October 1998): L1046—L1050. http://dx.doi.org/10.1016/s0039-6028(98)00563-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, He, Junming Sun, Changjun Liu, and Yong Wang. "Distinct water activation on polar/non-polar facets of ZnO nanoparticles." Journal of Catalysis 331 (November 2015): 57–62. http://dx.doi.org/10.1016/j.jcat.2015.08.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Libbrecht, K. G., T. Crosby, and M. Swanson. "Electrically enhanced free dendrite growth in polar and non-polar systems." Journal of Crystal Growth 240, no. 1-2 (April 2002): 241–54. http://dx.doi.org/10.1016/s0022-0248(01)02089-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Andrew, Charles D., Simon Penel, Gareth R. Jones, and Andrew J. Doig. "Stabilising Non-Polar/Polar Side Chain Interactions in the α-Helix." Biochemical Society Transactions 28, no. 3 (June 1, 2000): A72. http://dx.doi.org/10.1042/bst028a072c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

GOLLER, JEFFREY W. "Displacement of Polar by Non-Polar Organic Vapors in Sampling Systems." American Industrial Hygiene Association Journal 46, no. 3 (March 1985): 170–73. http://dx.doi.org/10.1080/15298668591394590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sung, T. H., J. C. Huang, and H. C. Chen. "Mechanical response of polar/non-polar ZnO under low dimensional stress." Applied Physics Letters 102, no. 24 (June 17, 2013): 241901. http://dx.doi.org/10.1063/1.4811554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Outcalt, Stephanie L., and Arno Laesecke. "Compressed-liquid densities of two highly polar+non-polar binary systems." Journal of Molecular Liquids 173 (September 2012): 91–102. http://dx.doi.org/10.1016/j.molliq.2012.06.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bartoš, I., O. Romanyuk, J. Houdkova, P. P. Paskov, T. Paskova, and P. Jiříček. "Electron band bending of polar, semipolar and non-polar GaN surfaces." Journal of Applied Physics 119, no. 10 (March 14, 2016): 105303. http://dx.doi.org/10.1063/1.4943592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sakwe, Sakwe Aloysius, Yeon Suk Jang, and Peter J. Wellmann. "Defect Etching of Non-Polar and Semi-Polar Faces in SiC." Materials Science Forum 556-557 (September 2007): 243–46. http://dx.doi.org/10.4028/www.scientific.net/msf.556-557.243.

Full text
Abstract:
Wet chemical etching using molten KOH is the most frequently applied method to reveal structural defects in SiC. Until now etching kinetics of SiC in planes different from the polar cplane has not been reported. In this paper we report on defect etching of SiC in non-polar faces. Using a calibrated KOH defect-etching furnace with possibilities to set accurate etching temperatures we have etched SiC samples of various orientations to (i) study defect occurrence and their morphologies (ii) set KOH defect etching parameters for SiC for these orientations and (iii) investigate etching kinetics in relation to anisotropy/surface polarity. For non-polar planes of the same orientations a comparison in etching kinetics and defect morphologies in crystals grown in different directions is presented.
APA, Harvard, Vancouver, ISO, and other styles
46

Zaini, Sabeeh Jalil. "Calorimetric Study of N-methylacetamide in Polar and Non-Polar Solvents." Journal of Al-Nahrain University Science 15, no. 2 (June 1, 2012): 17–22. http://dx.doi.org/10.22401/jnus.15.2.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Boublík, Tomás̆. "Perturbation theory for mixtures of polar and non-polar anisotropic molecules." Fluid Phase Equilibria 73, no. 3 (May 1992): 211–24. http://dx.doi.org/10.1016/0378-3812(92)80011-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Oka, A., G. Sinha, C. Glorieux, and J. Thoen. "Broadband dielectric studies of weakly polar and non-polar liquid crystals." Liquid Crystals 31, no. 1 (January 2004): 31–38. http://dx.doi.org/10.1080/02678290310001611968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, L. W., D. Radford, K. Y. Cho, and N. G. Nair. "Spectrophotometric determination of polar and non-polar lipids in oleaginous yeast." World Journal of Microbiology & Biotechnology 9, no. 3 (May 1993): 350–52. http://dx.doi.org/10.1007/bf00383078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Amilusik, M., T. Sochacki, B. Lucznik, M. Fijalkowski, J. Smalc-Koziorowska, J. L. Weyher, H. Teisseyre, B. Sadovyi, M. Bockowski, and I. Grzegory. "Homoepitaxial HVPE-GaN growth on non-polar and semi-polar seeds." Journal of Crystal Growth 403 (October 2014): 48–54. http://dx.doi.org/10.1016/j.jcrysgro.2014.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography