Academic literature on the topic 'Non noble transition metal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non noble transition metal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Non noble transition metal"

1

Caffrey, Andrew P., Patrick E. Hopkins, J. Michael Klopf, and Pamela M. Norris. "Thin Film Non-Noble Transition Metal Thermophysical Properties." Microscale Thermophysical Engineering 9, no. 4 (October 2005): 365–77. http://dx.doi.org/10.1080/10893950500357970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Ying, Yuling Hu, and Gongke Li. "A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection." Chemosensors 11, no. 8 (August 1, 2023): 427. http://dx.doi.org/10.3390/chemosensors11080427.

Full text
Abstract:
Surface-enhanced Raman scattering (SERS), a powerful spectroscopic technique owing to its abundant vibrational fingerprints, has been widely employed for the assay of analytes. It is generally considered that one of the critical factors determining the SERS performance is the property of the substrate materials. Apart from noble metal substrates, non-noble metal nanostructured materials, as emerging new substrates, have been extensively studied for SERS research by virtue of their superior biocompatibility, good chemical stability, outstanding selectivity, and unique physicochemical properties such as adjustable band structure and carrier concentration. Herein, in this review, we summarized the research on the analytical application of non-noble metal SERS substrates from three aspects. Firstly, we started with an introduction to the possible enhancement mechanism of non-noble metal substrates. Then, as a guideline for substrates design, several main types of materials, including carbon nanomaterials, transition metal dichalcogenides (TMDs), metal oxides, metal-organic frameworks (MOFs), transition metal carbides and nitrides (MXenes), and conjugated polymers were discussed. Finally, we especially emphasized their analytical application, such as the detection of pollutants and biomarkers. Moreover, the challenges and attractive research prospects of non-noble metal SERS substrates in practical application were proposed. This work may arouse more awareness of the practical application of the non-noble metal material-based SERS substrates, especially for bioanalysis.
APA, Harvard, Vancouver, ISO, and other styles
3

Guo, Xiaotian, Guangxun Zhang, Qing Li, Huaiguo Xue, and Huan Pang. "Non-noble metal-transition metal oxide materials for electrochemical energy storage." Energy Storage Materials 15 (November 2018): 171–201. http://dx.doi.org/10.1016/j.ensm.2018.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mantella, Valeria, Laia Castilla-Amorós, and Raffaella Buonsanti. "Shaping non-noble metal nanocrystals via colloidal chemistry." Chemical Science 11, no. 42 (2020): 11394–403. http://dx.doi.org/10.1039/d0sc03663c.

Full text
Abstract:
This minireview describes the state-of-the-art of shape-controlled nanocrystals of third raw transition metals and discusses future directions to advance their synthetic development, which is important for many applications.
APA, Harvard, Vancouver, ISO, and other styles
5

Niu, Xiangheng, Xin Li, Jianming Pan, Yanfang He, Fengxian Qiu, and Yongsheng Yan. "Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges." RSC Advances 6, no. 88 (2016): 84893–905. http://dx.doi.org/10.1039/c6ra12506a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alhassan, Mansur, Mahadi Bin Bahari, Abdelrahman Hamad Khalifa Owgi, and Thuan Van Tran. "Non-noble metal catalysts for dry reforming of methane: Challenges, opportunities, and future directions." E3S Web of Conferences 516 (2024): 02002. http://dx.doi.org/10.1051/e3sconf/202451602002.

Full text
Abstract:
The utilization of non-noble metal catalysts for the dry reforming of methane (DRM) has gained significant attention in recent years due to the increasing demand for clean and sustainable energy sources. DRM involves the conversion of methane (CH4) and carbon (IV) oxide (CO2) into synthesis gas (syngas), a valuable mixture of hydrogen (H2) and carbon monoxide (CO). Commercialization of non-noble metal catalysts for this reaction presents several challenges that must be addressed to achieve practical implementation. This short review discusses the challenges, opportunities, and future directions of non-noble metal catalysts for DRM. First, the limitations associated with the intrinsic activity and stability of non-noble metals, such as nickel, cobalt, and iron, are explored. Enhancing catalyst performance through compositional modifications, the incorporation of promoters and supports, are ways to overcome these challenges. Directions that hold promise for advancing non-noble metal catalysts in DRM, including the advanced exploration of bimetallic catalysts for synergistic effects, and the integration of non-noble metals into novel catalytic systems, were among the future proposals, while non-noble metal catalysts have the potential to revolutionize the production of syngas and contribute significantly to the transition towards sustainable energy solutions.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Wenqing, Juan Wang, Lanling Zhao, Junru Wang, and Mingwen Zhao. "Transition-metal monochalcogenide nanowires: highly efficient bi-functional catalysts for the oxygen evolution/reduction reactions." Nanoscale 12, no. 24 (2020): 12883–90. http://dx.doi.org/10.1039/d0nr01148g.

Full text
Abstract:
We demonstrate the transition-metal monochalcogenide nanowires as efficient bi-functional OER/ORR catalysts competitive with noble catalysts, paving a way for the development of stable, low-cost and high-active non-noble electrocatalysts.
APA, Harvard, Vancouver, ISO, and other styles
8

Nkabinde, Siyabonga S., Patrick V. Mwonga, Siyasanga Mpelane, Zakhele B. Ndala, Tshwarela Kolokoto, Ndivhuwo P. Shumbula, Obakeng Nchoe, et al. "Phase-dependent electrocatalytic activity of colloidally synthesized WP and α-WP2 electrocatalysts for hydrogen evolution reaction." New Journal of Chemistry 45, no. 34 (2021): 15594–606. http://dx.doi.org/10.1039/d1nj00927c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jin, Xinxin, Yu Jiang, Qi Hu, Shaohua Zhang, Qike Jiang, Li Chen, Ling Xu, Yan Xie, and Jiahui Huang. "Highly efficient electrocatalysts with CoO/CoFe2O4 composites embedded within N-doped porous carbon materials prepared by hard-template method for oxygen reduction reaction." RSC Advances 7, no. 89 (2017): 56375–81. http://dx.doi.org/10.1039/c7ra09517a.

Full text
Abstract:
Low-cost dual transition metal (Fe and Co) based non-noble metal electrocatalysts (NNMEs) with large surface area and porous structure boost oxygen reduction reaction (ORR) performance in alkaline solution.
APA, Harvard, Vancouver, ISO, and other styles
10

Masferrer-Rius, Eduard, and Robertus J. M. Klein Gebbink. "Non-Noble Metal Aromatic Oxidation Catalysis: From Metalloenzymes to Synthetic Complexes." Catalysts 13, no. 4 (April 19, 2023): 773. http://dx.doi.org/10.3390/catal13040773.

Full text
Abstract:
The development of selective aromatic oxidation catalysts based on non-noble metals has emerged over the last decades, mainly due to the importance of phenol products as intermediates for the generation of pharmaceuticals or functional polymers. In nature, metalloenzymes can perform a wide variety of oxidative processes using molecular oxygen, including arene oxidations. However, the implementation of such enzymes in the chemical industry remains challenging. In this context, chemists have tried to mimic nature and design synthetic non-noble metal catalysts inspired by these enzymes. This review aims at providing a general overview of aromatic oxidation reactions catalyzed by metalloenzymes as well as synthetic first-row transition-metal complexes as homogeneous catalysts. The enzymes and complexes discussed in this review have been classified based on the transition-metal ion present in their active site, i.e., iron, copper, nickel, and manganese. The main points of discussion focus on enzyme structure and function, catalyst design, mechanisms of operation in terms of oxidant activation and substrate oxidation, and substrate scope.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Non noble transition metal"

1

Janisch, Daniel. "Geo-inspired pathways towards ternary non-noble metal (pre-)catalysts for water splitting and CO2 reduction." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS387.pdf.

Full text
Abstract:
Une transition des sources d'énergie fossiles vers la production d'énergie renouvelable nécessite des systèmes de stockage qui compensent l'intermittence des sources d'énergie verte. La production d'hydrogène provenant de l'électrolyse de l'eau alimentée par l'électricité solaire ou éolienne est un vecteur d'énergie abondante, propre et renouvelable. De plus, l'énergie renouvelable en surplus peut être stockée dans des carburants ou des produits chimiques plus complexes. Liée à l'électrolyse, l'électro-réduction du CO2 (CO2R) produit des hydrocarbures à haute densité énergétique qui stockent également de l'énergie dans les liaisons chimiques. Toutefois, le manque de viabilité économique empêche encore l'utilisation à grande échelle de ces procédés. Les électrodes mieux performants actuels dans l’électrolyse de l'eau sont platine et iridium qui sont chers et peu abondants. Les composés de métaux de transition plus répandus représentent une alternative beaucoup moins coûteuse. Il a été démontré que l'activité et la stabilité dans les électrolytes acides et alcalins sont améliorées, notamment dans les borures, les siliciures et les carbures binaires de métaux de transition. Les liaisons covalentes entre les éléments du bloc p et entre ces éléments et les métaux de transition, ainsi que les modifications de la densité de charge du métal qui en résultent, ont été identifiées comme des acteurs clés responsables de l'augmentation de l'activité catalytique. Néanmoins, la relation structure-activité reste obscure. La faible sélectivité du CO2R est l'obstacle majeur actuel de ce processus, car la séparation complexe des produits en aval rend le processus industriel non rentable. Le cuivre est le seul électrocatalyseur métallique capable de former des quantités substantielles d'hydrocarbures C+2. Les éléments du bloc p, tels que le soufre, augmentent la sélectivité des sulfures de cuivre pour les produits à un seul atome de carbone. Cependant, le rôle du soufre au cours de la réaction CO2R n'est pas clair et la modification de l'état de charge du cuivre par deux éléments du bloc p pour favoriser des produits C+2 n'a pas été étudiée. Pour résoudre ces questions ouvertes, nous avons conçu des voies de réaction vers des composés ternaires combinant un métal de transition avec deux éléments du bloc p. Les processus de réaction sont inspirés de phénomènes géologiques et reposent sur l'utilisation de sels fondus en tant que milieux de réaction. Cette approche est susceptible de produire des matériaux nanostructurés avec un rapport surface-volume élevé, ce qui est idéal pour les applications catalytiques. Dans la première partie de ce travail, la synthèse de quatre silicoborures ternaires de métaux de transition Ni6Si2B, Co4.75Si2B, Fe5SiB2 et Mn5SiB2 est présentée, ainsi qu'une étude détaillée des propriétés électrocatalytiques pour l'oxydation de l'eau alcaline. La XRD in situ basée sur le rayonnement synchrotron résout les mécanismes de formation au cours de la synthèse et met en lumière les relations structurelles entre les intermédiaires de réaction et les produits finaux. La deuxième partie est consacrée à l'étude de l'influence du silicium, du bore et du carbone sur le molybdène dans trois composés ternaires, Mo2BC, Mo4.8Si3C, Mo5SiB2, en tant qu'électrocatalyseurs de l'évolution de l'hydrogène à partir d'électrolytes aqueux acides et alcalins. Les techniques XPS et XAS mettent en évidence la relation entre l'état d'oxydation du molybdène et l'activité catalytique. L'évaluation de deux silicosulfures de cuivre ternaires Cu8SiS6 et Cu2SiS3 en tant que catalyseurs pour le CO2R constitue le sujet de la troisième partie de ce travail. La séquence de cristallisation au cours de la synthèse a été suivie par des mesures XRD in situ et les configurations électroniques ont été évaluées par XPS et XAS. Enfin, des mesures XAS in situ pendant les réactions de réduction du CO et du CO2 montrent comment les matériaux évoluent pendant la catalyse
A full transition from fossil-based energy sources towards green energy production requires storage systems compensating for the intermittency of renewables. The production of green hydrogen from electrolysis of water powered by surplus electricity from solar or wind attracts a lot of attention as an abundant, clean and renewable energy vector. Beyond the electrolysis of water, surplus renewable energy can further be stored in more complex fuels or chemicals. Related to electrolysis, the electroreduction of CO2 (CO2R) yields energy-dense hydrocarbons storing also energy in chemical bonds. A lack of economic viability, however, still blocks widespread industrial use of these processes. The benchmark electrodes in water electrolysis cells are platinum group metals that are expensive and not abundantly available. Compounds of more common transition metals represent a much cheaper alternative as potential electrocatalysts for water splitting. It was shown that activity and stability in both acidic and alkaline electrolytes is enhanced most notably in binary transition metal borides (TMBs), silicides (TMSs) and carbides (TMCs). Covalent bonds between p-block elements and between these elements and the transition metals, and the resulting modifications of the metal charge density have been identified as key factors responsible for augmented catalytic activity. Nevertheless, the structure-activity relationship remains obscure and whether catalytic properties could be further boosted by a twofold combination of p-block elements with a transition metal has not been answered. Low CO2R selectivity is the current bottleneck in this process as intricate downstream product separation renders an industrial process unprofitable. Copper is the only metal electrocatalyst able to form substantial amounts of C+2 hydrocarbons. Again, p-block elements such as sulphur are reported to increase selectivity in copper sulphides to one-carbon products. Yet, the role of sulphur during CO2R remains unclear and whether a second p-block element could tune the charge state of copper to favour a single reduction pathway towards C+2 products has not been explored. To resolve these open questions, we have designed reaction pathways towards ternary compounds combining a transition metal with two p-block elements. The reaction processes are inspired by geological processes and rely on the use of molten salts as reaction media. Compared to classical solid-state synthesis, molten salts increase diffusivity of reactants and enable overall lower temperatures and reaction times. As a result, the process is prone to deliver nanostructured materials with high surface-to-volume ratio and without organic surface ligands, which is ideal for catalytic applications. In the first part of this work, the synthesis of four ternary transition metal silicoborides Ni6Si2B, Co4.75Si2B, Fe5SiB2 and Mn5SiB2 is presented, together with a detailed study of the electrocatalytic properties for alkaline water oxidation (OER). Synchrotron radiation-based in situ XRD resolves the formation mechanisms during the synthesis and sheds light on structural relationships between reaction intermediate and the final products. The second part is dedicated to the investigation of the influence of silicon, boron and carbon on molybdenum in three ternary compounds, Mo2BC, Mo4.8Si3C, Mo5SiB2, as electrocatalysts of hydrogen evolution from acidic and alkaline aqueous electrolytes. XPS and XAS point out the relationship between the oxidation state of molybdenum and the electrocatalytic activity. The assessment of two ternary copper silicosulphides Cu8SiS6 and Cu2SiS3 as catalysts for CO2R constitutes the topic of the third part of this work. The crystallisation sequence during synthesis was monitored during in situ XRD measurements and electronic configurations were assessed by XPS and XAS. Finally, in situ XAS during CO and CO2 reduction reactions shows how the materials evolve during electrocatalysis
APA, Harvard, Vancouver, ISO, and other styles
2

Tao, Shasha [Verfasser], Bernhard [Akademischer Betreuer] Kaiser, and Bastian J. M. [Akademischer Betreuer] Etzold. "Electrodeposition of Nickel-Based Non-Noble Transition Metal Compounds for Electrocatalytic Water Splitting / Shasha Tao ; Bernhard Kaiser, Bastian J. M. Etzold." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2019. http://d-nb.info/1192442547/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tao, Shasha [Verfasser], Bernhard [Akademischer Betreuer] Kaiser, and Bastian [Akademischer Betreuer] Etzold. "Electrodeposition of Nickel-Based Non-Noble Transition Metal Compounds for Electrocatalytic Water Splitting / Shasha Tao ; Bernhard Kaiser, Bastian J. M. Etzold." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2019. http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-89232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ben, Miled Marwan. "Synthèse in situ de nanoparticules métalliques dans une matrice céramique dérivées de polymères précéramiques pour l'électrolyse de l'eau en milieu alcalin." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0083.

Full text
Abstract:
Face au réchauffement climatique dû aux activités humaines et à l’utilisation de ressources fossiles, le besoin de trouver de nouvelles sources d’énergies décarbonées devient urgent. Le dihydrogène (H2) communément appelé « hydrogène » s’impose comme un vecteur énergétique d’intérêt de par sa capacité à produire une énergie de combustion supérieure à celle des énergies fossiles et à ne produire que de l’eau comme déchet lors de son utilisation dans une pile à combustible. De plus, son utilisation ne génère aucune nuisance sonore à la différence des moteurs thermiques couramment employés. Néanmoins, elle requiert un très haut degré de pureté afin d’éviter la pollution des matériaux catalytiques contenus dans ces piles à combustible. De nos jours, près de 95% de l’hydrogène produit se fait par reformage catalytique du méthane et nécessite donc des procédés de purification souvent complexes et couteux. Une façon de s’affranchir de ces procédés serait de produire l’hydrogène directement par électrolyse de l’eau. Cette méthode consiste à séparer une molécule d’eau sous l’action d’un courant électrique (produit de façon renouvelable) pour produire de l’hydrogène et du dioxygène (O2) aux bornes d’électrodes d’un électrolyseur. Malheureusement, cette réaction se heurte à des limitations cinétiques en raison d’un mécanisme de réaction de dégagement de dioxygène (RDO) très complexe, incluant plusieurs électrons et plusieurs intermédiaires réactionnel. L’émergence de nouvelles technologies de membranes échangeuses d’anion a ouvert la voie à l’utilisation de l’électrolyse en milieu alcalin, permettant donc l’utilisation de métaux de transition non nobles comme catalyseurs, moins couteux que les métaux traditionnellement employés (Ir et Ru). Ce manuscrit de thèse a donc exploré la synthèse de matériaux à visée catalytique pour réduire les barrières énergétiques et cinétiques de la RDO. Afin de proposer des matériaux performants, stables dans le temps et résistant aux milieux agressifs imposés par l’électrolyse de l’eau en milieu alcalin, la voie des céramiques dérivées de polymères précéramiques (PDC pour Polymer-Derived Ceramics) s’est avéré être une méthode d’élaboration de choix pour y parvenir. L’intérêt de cette méthode est de mettre en œuvre des polymères organosiliciés (ici un polysilazane) servant de plateforme moléculaire pour la croissance de métaux non nobles via l’utilisation de complexes métalliques tels que des chlorures et des acétylacétonates de nickel (Ni), de fer (Fe) ou encore de cobalt (Co). Ce polymère modifié par ces métaux sert de précurseur à la formation in situ de nanoparticules métalliques dans une matrice poreuse à base des éléments silicium (Si), carbone (C), oxygène (O) et azote (N) et garantissant leur accessibilité et stabilité après traitement thermique à 500°C sous argon. Ce manuscrit illustré à travers cinq chapitres décrit des travaux sur la synthèse et la caractérisation de nanoparticules de Ni (chapitre 3), Ni-Fe (chapitre 4) et d’alliages à moyenne et haute entropie (chapitre 5) qui complètent un état de l’art (chapitre 1) et une description des matériaux et méthodes mises en œuvre au cours de cette thèse (chapitre 2). Les matériaux formés ont été étudiés à chaque étape de leur synthèse à travers la mise en œuvre d’outils de caractérisation complémentaires avant d’en évaluer les performances électrochimiques ; notamment par mesure de la surtension anodique lors de la RDO afin d’identifier la meilleure combinaison métallique. Des tests post mortem ont été réalisés pour évaluer le potentiel des matériaux préparés. Compte tenu de la simplicité de la voie de synthèse et du faible coût des réactifs utilisés, ces travaux conduisent à une nouvelle famille de matériaux et à plusieurs perspectives prometteuses, non seulement pour le développement de catalyseurs efficaces et stables pour l'OER mais plus généralement pour de nombreuses applications en électrochimie. Ces opportunités sont désormais exploitées
Global warming caused by human activity and the use of fossil fuels, urges the need to find new sources of carbon free energy. Dihydrogen (H2) more known as “hydrogen” is rapidly emerging as a technically viable and benign energy vector according to its ability to produce a higher density of combustion than fossil fuels and to produce only water as a waste product when used in a fuel cell. Moreover, its use generates no noise pollution, unlike the combustion engines currently in use. Nevertheless, it requires a very high degree of purity in order to avoid pollution of the catalytic materials contained in the cells. Nowadays, nearly 95% of the hydrogen produced is obtained by catalytic reforming of methane, and therefore requires purification processes that are often complex and costly. One way of avoiding these purification steps would be to produce hydrogen directly by electrolysis of water more known as water splitting. This process consists of separating a molecule of water under the action of an electric current (produced in a renewable way) to produce hydrogen and dioxygen (O2) at the electrodes of an electrolyser. Unfortunately, this reaction has kinetic limitations due to a very complex Oxygen Evolution Reaction (OER) mechanism, including several electrons and several reaction intermediates. The emergence of new anion exchange membrane technologies has paved the way for the use of electrolysis in alkaline media, thus allowing the use of non-noble transition metals as catalysts, which are less expensive than the metals traditionally used (Ir and Ru). Within this context, this PhD thesis has explored the synthesis of catalytic materials to reduce the energy and kinetic barriers of OER. In order to propose materials that are performant, stable over time and resistant to the aggressive environments imposed by the electrolysis of water in an alkaline medium, the polymer-derived ceramics (PDC) route has been selected as a synthesis method of choice. The interest of this method is to implement organosilicon polymers (here a polysilazane) serving as a molecular platform for the growth of non-noble metals via the use of metal complexes such as chlorides and acetylacetonates of nickel (Ni), iron (Fe) or cobalt (Co). This polymer modified by these metals serves as a precursor for the in situ formation of metal nanoparticles in a porous matrix based on the elements silicon (Si), carbon (C), oxygen (O) and nitrogen (N) allowing their accessibility and stability after heat treatment at 500 ° C under argon. This manuscript illustrated through five chapters describes works dedicated to the synthesis and characterization of Ni (chapter 3), Ni-Fe (chapter 4) and medium and high entropy alloys (chapter 5) nanoparticles which complete a state of the art (chapter 1) and a description of the materials and methods implemented during this thesis (chapter 2). The materials which have been prepared were studied at each stage of their synthesis through the implementation of complementary characterization tools before assessing their electrochemical performances; in particular by measuring the anodic overpotential during OER, in order to determine the best metal combinations. Post mortem tests were carried out to evaluate the potential of the prepared materials. Considering the simplicity of the synthesis route, and the low cost of reactants used, this work leads to a new family of materials and to several promising perspectives, not only for the development of efficient and stable catalysts for the OER but more generally for numerous applications in electrochemistry. These opportunities are now being addressed
APA, Harvard, Vancouver, ISO, and other styles
5

Howdle, Steven M. "Spectroscopy in liquefied and supercritical noble gases." Thesis, University of Nottingham, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carson, Cantwell G. "Noble and transition metal aromatic frameworks synthesis, properties, and stability /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29657.

Full text
Abstract:
Thesis (Ph. D.)--Materials Science and Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Rina Tannenbaum; Committee Co-Chair: Rosario A. Gerhardt; Committee Member: E. Kent Barefield; Committee Member: Karl I. Jacob; Committee Member: Preet Singh; Committee Member: R. Bruce King. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
7

Garg, Aaron R. "Transition metal carbide and nitride nanoparticles with Noble metal shells as enhanced catalysts." Thesis, Massachusetts Institute of Technology, 2018. https://hdl.handle.net/1721.1/121890.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2018
Cataloged from PDF version of thesis. Page 157 blank. Vita.
Includes bibliographical references (pages 137-153).
Core-shell nanostructures represent a promising and versatile design platform for enhancing the performance of noble metal catalysts while reducing the cost. Early transition metal carbides (TMCs) and nitrides (TMNs) have been identified as ideal core materials for supporting noble metal shells owing to their earth-abundance, thermal and chemical stability, electrical conductivity, and their ability to bind strongly to noble metals while still being immiscible with them. Unfortunately, the formation of surface oxides or carbon on TMCs and TMNs presents a difficult synthetic challenge for the deposition of atomically thin, uniform noble metal layers. Recent advances have enabled the synthesis of TMC core nanoparticles with noble metal shells (denoted as NM/TMC), although applicability toward TMN cores has not been previously demonstrated. Furthermore, the complete properties of these unique materials are still unknown.
This thesis conducts a detailed investigation of the synthesis, characterization, and catalytic performance of NM/TMC and NM/TMN core-shell nanoparticles to provide a comprehensive understanding of their material properties and the underlying phenomena. First, in-situ studies yielded insight into the mechanism behind the high temperature self-assembly of NM/TMC particles, indicating the presence of a metallic alloy phase preceding the formation of the core-shell structure upon insertion of carbon into the lattice. Next, the synthesis of NM/TMN nanoparticles was demonstrated via nitridation of a parent NM/TMC, and the structural and electronic properties of both core-shell materials were examined through in-situ X-ray absorption spectroscopy (XAS). The analysis revealed significant alterations to the electronic structure of the noble metal shell due to bonding interactions with the TMC and TMN cores, which led to weakened adsorbate binding energies.
Finally, the materials displayed improved performance for the oxygen reduction reaction (ORR), a critical challenge for fuel cell technologies. Notably, particles with complete, uniform shells exhibited unprecedented stability during electrochemical ageing at highly oxidizing conditions, highlighting the great potential of core-shell architectures with earth-abundant TMC and TMN cores for future ORR applications. Overall, this work will provide new opportunities toward the design of enhanced noble metal catalysts and enable further optimization of their performance.
by Aaron R. Garg.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemical Engineering
APA, Harvard, Vancouver, ISO, and other styles
8

Jonsson, Daniel. "Evaluation of Non-Noble Metal Catalysts for CO Oxidation." Thesis, KTH, Skolan för kemivetenskap (CHE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207363.

Full text
Abstract:
The aim of the study is to evaluate the ability of non-noble metal catalysts to function as the commercially used noble metal catalyst. The exhaust gas that was used in the project is generated from a heater developed by ReformTech AB with diesel as fuel. The compound that was focused on is carbon monoxide that has a concentration of 300-750 ppm. The catalysts that were tested are MnO/CeO2, CuO/CeO2 and a Pt/CeO2 catalyst used to compare the non-noble metal catalyst with. The sensitivity against sulfur poisoning was also analyzed by mixing sulfur into the fuel. Analysis of the exhaust gas was done with a micro-GC and the catalysts were also analyzed with SEM before and after exposure of sulfur.   The manganese catalyst with a loading of 7 wt-% did not show any activity against carbon monoxide oxidation. The copper catalysts contained two different loadings of active material, 7 and 14 wt-% and monoliths with 400 and 600 cpsi were used. Both loadings showed good activity against carbon monoxide oxidation.   The most prominent catalyst was the 14 wt-% CuO/CeO2 catalyst with a 600 cpsi monolith because of an increase in surface area. The SEM analysis showed that sulfur was present on the surface when the heater was using diesel with 300 ppm sulfur. The sulfur caused complete deactivation of the non-noble metal catalysts and a small decrease in activity was shown on the noble metal Pt catalyst.
APA, Harvard, Vancouver, ISO, and other styles
9

Wan, Abu Bakar Wan Azelee. "Non-noble metal environmental catalysts : synthesis, characterisation and catalytic activity." Thesis, University of Nottingham, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leonardy, Adrianus. "Non-Noble Metal Electrocatalysts for Proton Exchange Membrane Fuel Cell." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12036.

Full text
Abstract:
Transition metal-nitrogen complex have shown promising electrocatalytic activity towards the oxygen reduction reaction (ORR) that can potentially replace the platinum-based electrocatalysts in fuel cell, which generally suffer from scarcity and instability issue. Iron and cobalt have been reported to posses the best electrocatalytic performance in comparison with other transition metals due to the nature of their d-electron configuration that fulfill the prerequisite strong back-bonding for the activation of oxygen molecule. Apart from the metal active centre, other factors such as catalyst support, electrode thickness and surface-nitrogen content have also been considered play important roles to improve the catalytic performance of transition-metal-nitrogen complex materials. In this study we integrated those factors and approaches to create non-noble metal-based electrocatalysts for proton exchange membrane fuel cell (PEMFC) with improved catalytic activity. Iron and cobalt were used as ORR metal active centers and different type of carbon supports were employed as electrocatalysts supports. Three different electrocatalysts were developed in this project, including ironcobaltnitrogen complex supported carbon nanotubes that were grown on carbon paper substrate, iron-cobalt-nitrogen complex incorporated vertically aligned carbon nanotubes and iron-cobalt-nitrogen complex incorporated vertically aligned nitrogen-doped carbon nanotubes. The electrochemical performances of those electrocatalysts were compared with platinum-based electrocatalyst, which is the most common commercial electrocatalysts recently. The results show that the developed non-noble metal-based electrocatalysts posses improved electrocatalytic properties in terms of electrochemical surface area, electron transfer number, kinetic rate constant, durability and methanol fuel tolerance.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Non noble transition metal"

1

Klein Gebbink, Robertus J. M., and Marc-Etienne Moret, eds. Non-Noble Metal Catalysis. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527699087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goldmann, A., ed. Noble Metals, Noble Metal Halides and Nonmagnetic Transition Metals. Berlin/Heidelberg: Springer-Verlag, 2003. http://dx.doi.org/10.1007/b72681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Zhongwei, Jean-Pol Dodelet, and Jiujun Zhang Dodelet, eds. Non-Noble Metal Fuel Cell Catalysts. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deng, You Quan. Non-steady behaviour in the oxidation of methane over supported noble-metal catalysts. Portsmouth: University of Portsmouth, Division of Chemistry, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goldmann, A. Noble Metals, Noble Metal Halides and Nonmagnetic Transition Metals. Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Zhongwei, Jiujun Zhang, and Jean-Pol Dodelet. Non-Noble Metal Fuel Cell Catalysts. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Zhongwei, Jiujun Zhang, and Jean-Pol Dodelet. Non-Noble Metal Fuel Cell Catalysts. Wiley-VCH Verlag GmbH, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Zhongwei, Jiujun Zhang, and Jean-Pol Dodelet. Non-Noble Metal Fuel Cell Catalysts. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Zhongwei, Jiujun Zhang, and Jean-Pol Dodelet. Non-Noble Metal Fuel Cell Catalysts. Wiley & Sons, Limited, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Zhongwei, Jiujun Zhang, and Jean-Pol Dodelet. Non-Noble Metal Fuel Cell Catalysts. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Non noble transition metal"

1

Codolá, Zoel, Julio Lloret-Fillol, and Miquel Costas. "Catalytic Water Oxidation: Water Oxidation to O2 Mediated by 3d Transition Metal Complexes." In Non-Noble Metal Catalysis, 425–51. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Kunchan, Nicolas Alonso-Vante, and Jiujun Zhang. "Transition Metal Chalcogenides for Oxygen Reduction Electrocatalysts in PEM Fuel Cells." In Non-Noble Metal Fuel Cell Catalysts, 157–82. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664900.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jaouen, Frédéric. "Heat-Treated Transition Metal-NxCyElectrocatalysts for the O2Reduction Reaction in Acid PEM Fuel Cells." In Non-Noble Metal Fuel Cell Catalysts, 29–118. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664900.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ishihara, Akimitsu, Hideto Imai, and Ken-ichiro Ota. "Transition Metal Oxides, Carbides, Nitrides, Oxynitrides, and Carbonitrides for O2Reduction Reaction Electrocatalysts for Acid PEM Fuel Cells." In Non-Noble Metal Fuel Cell Catalysts, 183–204. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664900.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chirila, Andrei, Braja Gopal Das, Petrus F. Kuijpers, Vivek Sinha, and Bas de Bruin. "Application of Stimuli-Responsive and “Non-innocent” Ligands in Base Metal Catalysis." In Non-Noble Metal Catalysis, 1–31. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Darcel, Christophe, Jean-Baptiste Sortais, Duo Wei, and Antoine Bruneau-Voisine. "Iron-, Cobalt-, and Manganese-Catalyzed Hydrosilylation of Carbonyl Compounds and Carbon Dioxide." In Non-Noble Metal Catalysis, 241–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kneebone, Jared L., Jeffrey D. Sears, and Michael L. Neidig. "Reactive Intermediates and Mechanism in Iron-Catalyzed Cross-coupling." In Non-Noble Metal Catalysis, 265–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Planas, Oriol, Christopher J. Whiteoak, and Xavi Ribas. "Recent Advances in Cobalt-Catalyzed Cross-coupling Reactions." In Non-Noble Metal Catalysis, 297–328. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jacquet, Jérémy, Louis Fensterbank, and Marine Desage-El Murr. "Trifluoromethylation and Related Reactions." In Non-Noble Metal Catalysis, 329–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghosh, Pradip, Marc-Etienne Moret, and Robertus J. M. Klein Gebbink. "Catalytic Oxygenation of CC and CH Bonds." In Non-Noble Metal Catalysis, 355–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Non noble transition metal"

1

Bharti, Neetu Raj, Aditya Kushwaha, and Neeraj Goel. "Pt Nanocluster Decoration on WSe2 for Enhanced NO2 Sensing: A DFT Investigation." In JSAP-Optica Joint Symposia, 18a_A35_7. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18a_a35_7.

Full text
Abstract:
Gas sensors play a crucial role in various aspects, from ensuring safety to environmental conditions. NO2 is indeed a harmful gas, primarily emitted from the combustion of fossil fuels and industrial activities, causing health problems and contributing to pollution [1]. Decorating noble metals on 2D transition metal dichalcogenide (TMD) nanomaterial may benefits like enhanced sensitivity, selectivity, fast response and so on [2]. In this work, a density functional theory (DFT) study compared NO2 sensing in pristine WSe2, one Pt atom decorated at the hollow site (WSe2-1Pt), two Pt atoms decorated at a hollow site (WSe2-2Pt) and three Pt atoms decorated at a hollow site (WSe2-3Pt) over WSe2 monolayer. To enhance the sensitivity response of WSe2 upon NO2, the decoration of the Pt atom was proposed to improve the chemical activity and electron mobility of the whole system.
APA, Harvard, Vancouver, ISO, and other styles
2

Purz, Torben L., Adam Alfrey, Yuhang Cao, Hui Deng, Steven T. Cundiff, and Eric W. Martin. "Characterization of Two-Dimensional Materials using Ultrafast Spectroscopy and Imaging." In CLEO: Science and Innovations, SF2R.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf2r.4.

Full text
Abstract:
We demonstrate a rapid non-contact determination of layer thickness for transition metal dichalcogenides using hyperspectral four-wave mixing imaging, applicable to in-situ growth characterization. We further characterize the material with decay time maps.
APA, Harvard, Vancouver, ISO, and other styles
3

Antipova, Y. V., D. V. Karpov, and S. V. Saikova. "STUDY OF PHYSICOCHEMICAL PROPERTIES OF TRANSITION METAL FERRITE (Cu, Mn) NANOPARTICLES OBTAINED BY THERMAL DECOMPOSITION OF OXALATE PRECURSORS." In XVI INTERNATIONAL CONFERENCE "METALLURGY OF NON-FERROUS, RARE AND NOBLE METALS" named after corresponding member of the RAS Gennady Leonidovich PASHKOVA. Krasnoyarsk Science and Technology City Hall, 2023. http://dx.doi.org/10.47813/sfu.mnfrpm.2023.437-446.

Full text
Abstract:
In recent years, much attention has been paid to the study of the properties of magnetic nanomaterials based on ferrites of transition metals. Scientists’ interest in ferrite-based nanoparticles is due to the possibility of their wide application in biomedicine (drug delivery, cancer treatment, as contrasts for magnetic resonance imaging), the creation of magnetic recording devices, the space industry. Ferrites are widely used in the chemical industry, as catalysts.
APA, Harvard, Vancouver, ISO, and other styles
4

Kushwaha, Aditya, and Neeraj Goel. "Pd Decoration at Vertical Edge of MoS2 for Enhanced NO2 Sensitivity: A DFT Study." In JSAP-Optica Joint Symposia. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/jsapo.2023.20p_a602_7.

Full text
Abstract:
Gas sensors are vital for safety, air quality monitoring, industrial enhancement, and emission compliance [1]. NO2, a harmful gas released from the burning of fossil fuels, poses health hazards and contributes to pollution. Decorating noble metals on 2D transition metal dichalcogenide (TMD) nanomaterial-based gas sensors provides benefits like enhanced sensitivity, selectivity, fast response, and so on [2]. In this work, density functional theory (DFT) study compared NO2 sensing in pristine MoS2, Pd decorated at basal plane of MoS2 (Pd-B-MoS2), and Pd decorated at vertical edge of MoS2 (Pd-V-MoS2). Pd nanoparticles (NPs) decoration (top site) induce catalytic oxidation by extracting electrons from MoS2 through Fermi level disparities [3]. NO2, an electron-repelling compound, withdraws electrons from Pd-NPs. The spillover effect in Pd-V-MoS2 amplifies its sensing capabilities by offering additional reactive Mo sites [4]. Pd-V-MoS2 showed higher NO2 sensitivity than MoS2 and Pd-B-MoS2.
APA, Harvard, Vancouver, ISO, and other styles
5

Paproth, A., B. Adolphi, and K. J. Wolter. "Investigation of adhesive bonding on non-noble metal in Electronic Packaging." In 2010 3rd Electronic System-Integration Technology Conference (ESTC). IEEE, 2010. http://dx.doi.org/10.1109/estc.2010.5642832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Biniwale, Rajesh B., N. K. Labhsetwar, R. Kumar, and M. Z. Hasan. "A Non-Noble Metal Based Catalytic Converter for Two-Stroke, Two-Wheeler Applications." In SAE 2001 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-1303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xiao, Jie, and Peter A. Dowben. "Electronic Structure of Non-metal Phthalocyanine –– Comparison with 3d Transition Metal Phthalocyanines." In 2008 MRS Fall Meetin. Materials Research Society, 2008. http://dx.doi.org/10.1557/proc-1115-h08-06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Shengzhou, Liangwei Li, and Weiming Lin. "Non-noble metal-carbonized Nitrogen-doped aerogel composites as electrocatalysts for the oxygen reduction reaction." In 2013 International Conference on Materials for Renewable Energy and Environment (ICMREE). IEEE, 2013. http://dx.doi.org/10.1109/icmree.2013.6893698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Туресебеков, Арпай, Носир Шукуров, Хасан Шарипов, Роман Алабергенов, Абдували Зунунов, and Шухрат Шукуров. "Artificial waste as a new source of non-ferrous, noble, rare and toxic metals of Almalyk mining and metallurgical combine." In Mineralogical and technological appraisal of new types of mineral products. Petrozavodsk: Karelian Research Center of RAS, 2019. http://dx.doi.org/10.17076/tm13_4.

Full text
Abstract:
The results of the integrated study of metal waste from Almalyk Mining-Metallurgical Plant (AMMP) are reported. Non-ferrous, noble and rare-metal reserves in waste from the dressing and metallurgical conversion of copper-molybdenum and lead-zinc deposits were evaluated. Analysis of the chemical composition and distribution of non-ferrous, noble, rare and toxic metals and their mode of occurrence in artificial waste from AMMP has shown that they are highly complex ores which could be used to increase metal production at AMMP.
APA, Harvard, Vancouver, ISO, and other styles
10

Ignatiev, A., N. J. Wu, S. Q. Liu, X. Chen, Y. B. Nian, C. Papaginanni, J. Strozier, and Z. W. Xing. "Resistance Switching Memory Effect in Transition Metal Oxide Thin Films." In 2006 7th Annual Non-Volatile Memory Technology Symposium. IEEE, 2006. http://dx.doi.org/10.1109/nvmt.2006.378886.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Non noble transition metal"

1

Talu, Orhan, and Surendra N. Tewari. Sub-Nanostructured Non Transition Metal Complex Grids for Hydrogen Storage. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/918886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davenport, Timothy, Jiayu Peng, and Yang Shao-Horn. High Performance non-PGM Transition Metal Oxide ORR Catalysts of PEMFCs. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1785121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Andrade, Gabriel A., Terry Chu, Shikha Sharma, Brian Lindley Scott, John Cameron Gordon, Nathan C. Smythe, and Benjamin L. Davis. Transition Metal Based Redox Carriers for use in Non-aqueous Redox Flow Batteries. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1511187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography