Academic literature on the topic 'Non-noble catalyst'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-noble catalyst.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Non-noble catalyst"

1

Liu, Yanxia, Lin Zhao, Yagang Zhang, Letao Zhang, and Xingjie Zan. "Progress and Challenges of Mercury-Free Catalysis for Acetylene Hydrochlorination." Catalysts 10, no. 10 (October 20, 2020): 1218. http://dx.doi.org/10.3390/catal10101218.

Full text
Abstract:
Activated carbon-supported HgCl2 catalyst has been used widely in acetylene hydrochlorination in the chlor-alkali chemical industry. However, HgCl2 is an extremely toxic pollutant. It is not only harmful to human health but also pollutes the environment. Therefore, the design and synthesis of mercury-free and environmentally benign catalysts with high activity has become an urgent need for vinyl chloride monomer (VCM) production. This review summarizes research progress on the design and development of mercury-free catalysts for acetylene hydrochlorination. Three types of catalysts for acetylene hydrochlorination in the chlor-alkali chemical industry are discussed. These catalysts are a noble metal catalyst, non-noble metal catalyst, and non-metallic catalyst. This review serves as a guide in terms of the catalyst design, properties, and catalytic mechanism of mercury-free catalyst for the acetylene hydrochlorination of VCM. The key problems and issues are discussed, and future trends are envisioned.
APA, Harvard, Vancouver, ISO, and other styles
2

Bereketova, Akerke, Muthuchamy Nallal, Mohammad Yusuf, Sanha Jang, Karthick Selvam, and Kang Hyun Park. "A Co-MOF-derived flower-like CoS@S,N-doped carbon matrix for highly efficient overall water splitting." RSC Advances 11, no. 27 (2021): 16823–33. http://dx.doi.org/10.1039/d1ra01883c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shukla, M. K., Balendra V. S. Chauhan, Sneha Verma, and Atul Dhar. "Catalytic Direct Decomposition of NOx Using Non-Noble Metal Catalysts." Solids 3, no. 4 (December 2, 2022): 665–83. http://dx.doi.org/10.3390/solids3040041.

Full text
Abstract:
Nitrogen oxides (NOx) gases, such as nitrous oxide (N2O), nitrogen oxide (NO), and nitrogen dioxide (NO2), are considered the most hazardous exhausts exhaled by industries and stationary and non-stationary application engines. Investigation of catalytic decomposition of NO has been carried out on copper ion exchanged with different bases, such as COK12, Nb2O5, Y-zeolite, and ZSM5. The catalytic decomposition of NO is widely accepted as an excellent method for the abatement of NO. However, the catalyst that achieves the highest reactivity in terms of NO decomposition is still a matter of research. The present paper aims to extend the research on the reactivity of non-noble metal-based catalysts using the direct decomposition method to remove NO from diesel engine exhaust. The reactivity of catalysts was observed in a quartz fixed bed reactor of 10 mm diameter placed in a furnace maintained at a temperature of 200 °C to 600 °C. The flow of NO was controlled by a mass flow controller, and the gas chromatography technique was used to observe the reactivity of the catalysts. Analysis showed that adding Cu to COK12, Nb2O5, Y-zeolite, and ZSM5 supports resulted in a rise in NO decomposition compared to stand-alone supports. Further experimental trials on the performance of Cu-ZSM5 at varying flow rates of NO showed that the NO decomposition activity of the catalyst was higher at lower flow rates of NO.
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Hyo-Sik, Hyun-Ji Kim, Ji-Hyeon Kim, Jin-Ho Kim, Suk-Hwan Kang, Jae-Hong Ryu, No-Kuk Park, Dae-Sik Yun, and Jong-Wook Bae. "Noble-Metal-Based Catalytic Oxidation Technology Trends for Volatile Organic Compound (VOC) Removal." Catalysts 12, no. 1 (January 7, 2022): 63. http://dx.doi.org/10.3390/catal12010063.

Full text
Abstract:
Volatile organic compounds (VOCs) are toxic and are considered the most important sources for the formation of photochemical smog, secondary organic aerosols (SOAs), and ozone. These can also greatly affect the environment and human health. For this reason, VOCs are removed by applying various technologies or reused after recovery. Catalytic oxidation for VOCs removal is widely applied in the industry and is regarded as an efficient and economical method compared to other VOCs removal technologies. Currently, a large amount of VOCs are generated in industries with solvent-based processes, and the ratio of aromatic compounds is high. This paper covers recent catalytic developments in VOC combustion over noble-metal-based catalysts. In addition, this report introduces recent trends in the development of the catalytic mechanisms of VOC combustion and the deactivation of catalysts, such as coke formation, poisoning, sintering, and catalyst regeneration. Since VOC oxidation by noble metal catalysts depends on the support of and mixing catalysts, an appropriate catalyst should be used according to reaction characteristics. Moreover, noble metal catalysts are used together with non-noble metals and play a role in the activity of other catalysts. Therefore, further elucidation of their function and catalytic mechanism in VOC removal is required.
APA, Harvard, Vancouver, ISO, and other styles
5

Hao, Zhuo, Yangyang Ma, Yisong Chen, Pei Fu, and Pengyu Wang. "Non-Noble Metal Catalysts in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cells: Recent Advances." Nanomaterials 12, no. 19 (September 24, 2022): 3331. http://dx.doi.org/10.3390/nano12193331.

Full text
Abstract:
The oxygen reduction reaction (ORR) is one of the crucial energy conversion reactions in proton exchange membrane fuel cells (PEMFCs). Low price and remarkable catalyst performance are very important for the cathode ORR of PEMFCs. Among the various explored ORR catalysts, non-noble metals (transition metal: Fe, Co, Mn, etc.) and N co-doped C (M–N–C) ORR catalysts have drawn increasing attention due to the abundance of these resources and their low price. In this paper, the recent advances of single-atom catalysts (SACs) and double-atom catalysts (DACs) in the cathode ORR of PEMFCs is reviewed systematically, with emphasis on the synthesis methods and ORR performance of the catalysts. Finally, challenges and prospects are provided for further advancing non-noble metal catalysts in PEMFCs.
APA, Harvard, Vancouver, ISO, and other styles
6

Waikar, Jyoti, Hari Pawar, and Pavan More. "REVIEW ON CO OXIDATION BY NOBLE AND NON-NOBLE METAL BASED CATALYST." Catalysis in Green Chemistry and Engineering 2, no. 1 (2019): 11–24. http://dx.doi.org/10.1615/catalgreenchemeng.2019030245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Song, Jialin, Ziliang Wang, Xingxing Cheng, and Xiuping Wang. "State-of-Art Review of NO Reduction Technologies by CO, CH4 and H2." Processes 9, no. 3 (March 23, 2021): 563. http://dx.doi.org/10.3390/pr9030563.

Full text
Abstract:
Removal of nitrogen oxides during coal combustion is a subject of great concerns. The present study reviews the state-of-art catalysts for NO reduction by CO, CH4, and H2. In terms of NO reduction by CO and CH4, it focuses on the preparation methodologies and catalytic properties of noble metal catalysts and non-noble metal catalysts. In the technology of NO removal by H2, the NO removal performance of the noble metal catalyst is mainly discussed from the traditional carrier and the new carrier, such as Al2O3, ZSM-5, OMS-2, MOFs, perovskite oxide, etc. By adopting new preparation methodologies and introducing the secondary metal component, the catalysts supported by a traditional carrier could achieve a much higher activity. New carrier for catalyst design seems a promising aspect for improving the catalyst performance, i.e., catalytic activity and stability, in future. Moreover, mechanisms of catalytic NO reduction by these three agents are discussed in-depth. Through the critical review, it is found that the adsorption of NOx and the decomposition of NO are key steps in NO removal by CO, and the activation of the C-H bond in CH4 and H-H bonds in H2 serves as a rate determining step of the reaction of NO removal by CH4 and H2, respectively.
APA, Harvard, Vancouver, ISO, and other styles
8

Akinlolu, Kayode, Bamgboye Omolara, Tripathi Shailendra, Akinsiku Abimbola, and Ogunniran Kehinde. "Synthesis, characterization and catalytic activity of partially substituted La1−xBaxCoO3 (x ≥ 0.1 ≤ 0.4) nano catalysts for potential soot oxidation in diesel particulate filters in diesel engines." International Review of Applied Sciences and Engineering 11, no. 1 (April 2020): 52–57. http://dx.doi.org/10.1556/1848.2020.00007.

Full text
Abstract:
AbstractThe sol gel method was used in preparing a series of A site partially substituted La1−xBaxCoO3 (x ≥ 0.1 ≤ 0.4) perovskite catalysts coded LBC1, 2, 3, and 4 and their potential as catalysts for soot oxidation were evaluated. The Brunauer–Emmett–Teller (BET), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES), Thermogravimetric/Differential Thermal Analysis (TGA/DTG), X-ray analysis (XRD) were used in characterizing the prepared perovskite catalyst. The result shows that at (x≥ 0.2 ≤ 0.4), there was an increase in surface area when we compare it with that of x = 0. The increase in surface area helps in increasing the catalytic performance of the catalyst. Also, when evaluating the catalytic performance of the synthesized catalysts, it was observed that doping the perovskite catalysts helped in the general improvement of the catalytic performance for soot oxidation. The best performance in this research study with a T50 of 484 °C was observed at x = 0.2 catalyst (LBC2). This shows that the non-noble perovskite catalysts prepared in this research study has the potential to replace the noble metal based catalysts used presently in the diesel automotive industry.
APA, Harvard, Vancouver, ISO, and other styles
9

Wei, Lei, Xiaomeng Wang, Ya-Na Yu, Hongyan Liu, Yepei Li, and Ya-Ni Zhang. "CoB/C3N4 photocatalyst for rapid hydrogen evolution from hydrolysis of sodium borohydride under light irradiation." Functional Materials Letters 14, no. 02 (February 2021): 2150013. http://dx.doi.org/10.1142/s1793604721500132.

Full text
Abstract:
For practical application of sodium borohydride (NaBH[Formula: see text] hydrolysis to generate hydrogen, metallic catalysts with low cost but excellent activity are highly desired. However, it remains a big challenge to further improve the activity of non-noble metal catalysts. In this work, photocatalysis technology was successfully introduced to enhance the catalyst activity for NaBH4 hydrolysis. By means of conventional impregnation-reduction method, CoB nanocatalyst was evenly deposited on graphitic carbon nitride surface, resulting in a Schottky-type photocatalyst (CoB/CN). As expected, hydrogen generation rate was greatly boosted owing to light irradiation. According to the results of capture experiments, photoexcited electron from g-C3N4 could enrich the electron density of CoB surface, which leads to the improvement of catalyst activity. Additionally, the light irradiation facilitates the remarkable decrease of apparent activation energy. Compared with some reported noble metal catalysts, the CoB/CN presents higher activity, especially under light irradiation.
APA, Harvard, Vancouver, ISO, and other styles
10

Lv, Changpeng, Dan Du, Chao Wang, Yingyue Qin, Jinlong Ge, Yansong Han, Junjie Zhu, and Muxin Liu. "The Flower-like Co3O4 Hierarchical Microspheres for Methane Catalytic Oxidation." Inorganics 10, no. 4 (April 2, 2022): 49. http://dx.doi.org/10.3390/inorganics10040049.

Full text
Abstract:
The development of non-noble Co3O4 catalysts exposing highly active crystal planes to low-temperature methane oxidation is still a challenge. Hence, a facile solvothermal method was adapted to construe flower-like Co3O4 hierarchical microspheres (Co3O4-FL), which are composed of nanosheets with dominantly exposed {112} crystal planes. The flower-like hierarchical structure not only promotes the desorption of high levels of active surface oxygen and enhances reducibility, but also facilitates an increase in lattice oxygen as the active species. As a result, Co3O4-FL catalysts offer improved methane oxidation, with a half methane conversion temperature (T50) of 380 °C (21,000 mL g−1 h−1), which is much lower than that of commercial Co3O4 catalysts (Co3O4-C). This study will provide guidance for non-noble metal catalyst design and preparation for methane oxidation and other oxidative reactions.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Non-noble catalyst"

1

Binny, Dustin. "Plasma functionalization of graphene nanoflakes for non-noble catalyst in fuel cells." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117182.

Full text
Abstract:
Two major obstacles currently limit the commercial viability of proton exchange membrane fuel cells (PEMFCs): cost and operating life. The most important contribution to the high cost of these systems is the use of platinum (Pt) as a catalyst, especially on the cathode where the oxygen reduction reaction (ORR) takes place. This thesis is part of the intensive international research efforts to find an alternative substitute for platinum. Doped carbon nanomaterials have been identified as a potential replacement for platinum ORR-electrocatalyst due to their excellent electrical conductivity and chemical resistance in acidic and basic environments. By doping the carbon nanomaterials with nitrogen, in the preferred pyridinic and quaternary forms, iron can be coordinated to complete the catalytic sites on an atomic scale. Nanocrystalline powder has recently been developed in the Plasma Processing Laboratory (PPL) at McGill University. The particles constituting the powder, in the form of graphene nanoflakes (GNFs), are formed by the superposition of ten graphene layers on average and have a spatial extension on the order of hundreds of nanometers. These planes have many terminating edges upon which nitrogen can be incorporated due to their high reactivity. The crystallinity also leads to a highly stable material paving the way for a promising catalyst replacement in the PEMFC.The objective of this thesis is to take these crystalline GNFs and dope them with nitrogen in high quantities on the edges of the graphene planes in pyridinic and quaternary forms to create the catalytic sites necessary for ORR. An inductively-coupled thermal plasma (ICP) is used to dissociate methane at very high temperatures, with homogeneous GNF nucleation commencing shortly after by way of rapid quenching. Nitrogen doping occurs in a second treatment phase by manipulating plasma conditions in order to create excited and dissociated nitrogen species that react at the edges of the GNFs.Nitrogen doping up to 33.4 at.%Ntotal has been demonstrated, which bests any other nitrogen-doped graphene by at least a factor of 2.6 and even the best nitrogen-doped carbonaceous material by 67%. Pyridinic and quaternary nitrogen constitute 8.2 at.%Npyrid and 4.9 at.%Nquat, respectively. This has been done whilst maintaining the crystalline structure and without introducing defects or impurities that would otherwise affect crystallinity and durability of these materials in future potential applications. Sequential in-situ GNF synthesis and deposition/dispersion onto a carbon cloth, which functions as the gas diffusion layer (GDL) in fuel cells, has also been demonstrated. Solid anchoring of the deposited GNFs on the individual carbon fibers is observed, and columnar growth with open film porosity reveals GNF films of micrometer-scale thicknesses. These films also exhibit desirable properties required for the ORR: porosity, homogeneity over a large area, good contact to the electrical transport throughout the network of particles and accessibility to the catalytic sites. The obtained properties seem in fact unmatched by catalytic particle ink applications commonly used in the manufacture of the catalyst layer. This in-situ work is promising and original, establishing a potential new method of producing membrane electrode assemblies (MEAs) in PEM fuel cell manufacturing.This new graphene nanomaterial could also pave the way for its potential use in supercapacitors, solar cells, biosensors, batteries, fuel storage, field-effect transistors, filtration and electrochemical devices, in addition to the fuel cell catalysis applications under study.
Deux obstacles majeurs limitent présentement la viabilité commerciale des piles à combustibles à membrane électrolyte polymérique (PEMFC), leurs prix et durée d'opération. La contribution la plus importante au coût élevé de ces systèmes est l'utilisation du platine (Pt) en tant que catalyseur, en particulier au niveau de la réaction de réduction de l'oxygène (ORR). Une activité de recherche intense à l'échelle internationale est en cours pour trouver une alternative de remplacement pour le platine; cette thèse s'inscrit dans cet effort. Certains matériaux tels les nanostructures à base de carbone fonctionalisées semblent prometteurs en tant que catalyseur pour la réaction ORR, en particulier de par leur bonne conductivité électrique et leur résistance à la dégradation en milieux acides ou alkalins. Les sites catalytiques dans ces matériaux sont établis par une fonctionalization spécifique à l'azote sur laquelle une coordination d'atomes de fer est ajoutée, formant ainsi des sites catalytiques dispersés à l'échelle atomique. Une poudre nanocrystalline a récemment été développée au Laboratoire de procédés plasmas (LPP) de l'Université McGill. Les particules formant cette poudre ont la forme de nanoflocons de graphene (NFG) formés par la superposition d'une dizaine de plans de graphène en moyenne, et ayant une extension spatiale de l'ordre de la centaine de nanomètres. Les bords de ces plans ont la réactivité et la structure nécessaire pour incorporer des fonctionalités à l'azote tout en maintenant la cristallinité des plans intacte. La grande cristallinité de ces matériaux leur donne une très bonne résistance à la corrosion et au milieux acide des PEMFC, et en font un candidat prometteur pour remplacer le platine.L'objectif de cette thèse et d'insérer une quantité important de fonctionalization à l'azote de forme pyridinique et quaternaire sur les bords des NFG afin de créer les sites catalytiques nécessaires pour la réaction ORR. Un plasma thermique à couplage inductif (ICP) est utilisé pour la dissociation du méthane à haute température, suivi d'une nucléation homogène des NFG dans les zones de trempe rapide du jet de plasma. La fonctionalization à l'azote est effectuée dans une deuxième phase du traitement en modifiant les paramètres d'opération du plasma afin de mettre à profit les espèces exitées et dissociés d'un plasma d'azote.Une fonctionalization à l'azote jusqu'à 33.4 at.%Ntotal est obtenue dans ce projet, cette valeur étant 2.6 fois supérieure au meilleur résultat obtenu dans la littérature pour le graphène fonctionalizé à l'azote, et même 67% supérieure au meilleur matériau carboné avec fonctionalité azote. Les fonctionalités à l'azote pyridinique et quaternaire constituent respectivement 8.2 at.%Npyrid et 4.9 at.%Nquat. Ces résultats sont obtenus en maintenant la structure NFG intacte, en particulier en maintenant leur crystallinité et sans l'introduction de défauts de structure ou d'impuretés pouvant diminuer la performance du matériau au niveau des applications. Une déposition in situ des NFG à l'intérieur du réacteur de synthèse sur une membrane de carbone telle qu'utilisée dans les piles à combustible a également été démontrée. Un bon ancrage du dépôt de NFG est observé sur la membrane, et une croissance colonnaire avec porosité ouverte du film montre des épaisseurs du film de NFG de l'ordre du micromètre. Ces films montrent également les propriétés requises pour la RRO, soit la porosité, l'homogénéité sur une grande surface, un bon contact dans tout le réseau de particules pour le transport électrique, et l'accessibilité aux sites catalytiques. Les propriétés obtenues semblent en fait inégalée par les encres de particules catalytiques utilisées couramment pour la fabrication de la couche catalytique. Cette déposition in situ semble donc prometteuse et originale pour établir une nouvelle méthode de production de l'assemblage membrane-électrodes dans la fabrication des piles à combustibles du type PEM.
APA, Harvard, Vancouver, ISO, and other styles
2

PEZZOLATO, LORENZO. "Fe-N-C non-noble catalysts for applications in Fuel Cells and Metal Air Batteries." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2809320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Biddinger, Elizabeth Joyce. "Nitrogen-Containing Carbon Nanofibers as Non-Noble Metal Cathode Catalysts in PEM and Direct Methanol Fuel Cells." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274389015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pascone, Pierre. "Synthesis, characterization, and performance of graphene nanoflakes as a non-noble metal catalyst in polymer electrolyte membrane fuel cells." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117071.

Full text
Abstract:
One of the goals in catalyst research for proton exchange membrane fuel cells (PEMFCs) is to find a cost-efficient alternative to platinum. Due to sluggish kinetics, the major requirement of the platinum comes from the catalyst layer used for the oxygen reduction reaction (ORR). Functionalized carbon nanomaterials present themselves as good candidates for the replacement of platinum due to their low cost, excellent electrical conductivity, and chemical resistance to acidic and basic environments. In this work, graphene nanoflakes (GNFs), which are nanopowders consisting of stacked graphene sheets, were used to support atomic iron as a non-noble metal catalyst. In the first stage of the study the iron-based catalyst was synthesized. Synthesis steps include the production of GNFs in methane plasma, adsorption of ferric acetate, and pyrolysis in ammonia-rich atmosphere. The catalyst structure was characterized at various stages throughout the synthesis steps and it was found that 0.28 atomic percent of iron could successfully be incorporated onto the surface. However, the synthesis method employed caused a general decrease to all calculated crystallinity parameters: purity decreased by 28%, crystallite size decreased by a factor of 2, and the average length of graphene plane decreased by a factor of 4. Characterization was also performed on the catalyst layer after it had been exposed to the PEMFC environment, revealing that the crystallinity parameters actually improved with respect to exposure time: after 100 hours purity increased by 32%, crystallite size increased by 25%, and the average length of graphene plane increased by 107%. Exposure to the PEMFC environment repairs the damage done to the original GNFs during the synthesis steps. The synthesized catalyst was used in the catalyst layer for the ORR of a PEMFC with a 1 cm2 active surface. A current of 150 mA/cm2 was observed at an applied voltage of 0.5 Volts with a catalyst loading of 1 mg. When the current is normalized with respect to the amount of metal present, the result of 11.8 A/mg of metal catalyst from the present catalyst out-performs most platinum-based catalysts being used in industry; current platinum catalyst have values ranging from 3 to 14 A/mg of platinum. In stability experiments, no losses were observed at the end of 100-hours long experiments performed at an applied voltage of 0.5 Volts. This represents a great improvement over comparable iron-based catalysts, which show a 45% loss under identical test conditions. The increased stability of the catalyst support structure demonstrates the advantage of the high crystallinity and large crystalline lengths of the GNFs in comparison to other commercial carbon blacks.
Un des objectifs de la recherche sur les catalyseurs pour les piles à combustible à membrane électrolyte polymérique (PCMEP) est de trouver une alternative moins coûteuse au platine. En raison d'une cinétique lente, le platine est surtout utilisé dans la couche de catalyseur au niveau de la cathode pour la réaction de réduction de l'oxygène (RRO). Les nanomatériaux de carbone fonctionnalisés se présentent comme de bons candidats pour le remplacement du platine en raison de leur faible coût, d'une excellente conductivité électrique et d'une résistance chimique aux milieux acides et basiques. Dans ce travail, les nanoflocons de graphène (NFG) constitués en moyenne d'une dixaine de plans de graphène empilées, ont été utilisés comme support aux atomes de fer pour créer un catalyseur métallique non noble. Lors d'une première étape, le catalyseur à base de fer a été synthétisé. Les étapes de synthèse comprennent la production des NFG dans le plasma de méthane, l'adsorption de l'acétate ferrique, et la pyrolyse dans une atmosphère riche en ammoniac. La structure du catalyseur a été caractérisée tout au long des étapes de synthèse, et il a été constaté qu'un pourcentage de 0,28 % en atomes de fer ont été incorporé aux structures NFG. Cependant, la méthode de synthèse utilisée a provoqué une baisse générale de tous les paramètres cristallins calculés: la pureté a diminué de 28%, la taille des cristallites a diminué d'un facteur 2, et la taille moyenne des plans de graphène d'un facteur 4. La caractérisation a été également effectuée sur la couche de catalyseur après avoir été exposée à l'environnement PCMEP, révélant que les paramètres cristallins sont effectivement améliorés avec la durée d'exposition. Au bout de 100 heures, la pureté a augmenté de 32%, la taille des cristallites de 25%, et la taille moyenne des plans de graphène de 107%. L'exposition à l'environnement de PCMEP a réduit les dommages causés aux NFG pendant les étapes de synthèse. Le catalyseur synthétisé a été utilisé pour la RRO dans un PCMEP avec une surface active de 1 cm2. Un courant de 150 mA/cm2 a été observé pour une tension appliquée de 0,5 volts et une masse de catalyseur de 1 mg. Lorsque le courant est normalisé par rapport à la quantité de métal présent, le résultat de 11,8 A/mg de métal surpasse les catalyseurs à base de platine les plus utilisés dans l'industrie. Les catalyseurs au platine ont des valeurs allant de 3 à 14 A/mg de platine. Dans les expériences de stabilité, pour une tension appliquée de 0,5 Volts, aucune perte de courant n'a été observée à la fin des 100 heures de l'expérience. Cela représente une grande amélioration par rapport aux autres catalyseurs à base de fer, qui montrent une perte de 45% dans des conditions expérimentales identiques. La stabilité accrue de la structure du catalyseur démontre l'avantage d'utiliser des NFG par rapport à d'autres nanomatériaux de carbone, grâce à leurs cristallinité élevée et leurs grandes longueurs cristallines.
APA, Harvard, Vancouver, ISO, and other styles
5

Tricàs, Rosell Núria. "Plasma modification on carbon black surface: From reactor design to final applications." Doctoral thesis, Universitat Ramon Llull, 2007. http://hdl.handle.net/10803/9288.

Full text
Abstract:
El present treball es basa en l'estudi de la modificació de la superfície del negre de carboni (NC) per mitjà de tècniques de plasma. Tot i que aquest tipus de tractament s'utilitza de manera comú sobre superfícies planes, tanmateix encara existeixen problemes a l'hora de treballar en materials en pols degut a la dificultat que suposa la seva manipulació. En aquest treball s'ha modificat NC tant per tècniques de plasma a baixa pressió com per mitjà de tècniques de plasma atmosfèric. Per tal d'assolir aquest objectiu s'han posat a punt tres reactors de plasma capaços de modificar aquest tipus de material; dos reactors treballen a baixa pressió mentre que el tercer es tracta d'un equip a pressió atmosfèrica.

Els sistemes de plasma a baixa pressió utilitzats han estat un reactor down-stream i un reactor de llit fluiditzat. Ambdós sistemes utilitzen un generador de radio freqüències a 13,56MHz per tal de general el plasma. Tots dos sistemes han estat optimitzats per la modificació de materials en pols. En el cas del reactor down-stream, s'ha estudiat a posició d'entrada del gas reactiu, la potència del generador i el temps de modificació per a tres tipus de tractament: oxigen, nitrogen i amoníac. En el cas del reactor de llit fluiditzat, els paràmetres que s'han estudiat han estat la distància entre la pols i la zona de generació de plasma, la mida de la partícula i la porositat de la placa suport.

Pel que fa a la modificació mitjançant la utilització de plasma atmosfèric, s'ha dissenyat un sistema que permet utilitzar una torxa de plasma atmosfèric comercial (Openair® de Plasmatreat GmbH) per tal de modificar materials en pols. Aquest sistema consisteix en un reactor adaptable a la torxa de plasma atmosfèric on té lloc la modificació, un sistema d'introducció de la pols dins de la zona de reacció així com també un sistema de refredament i col·lecció del material modificat que conjuntament permeten un funcionament quasi-continu del tractament.

S'ha utilitzat el reactor down-stream i el reactor a pressió atmosfèrica per tal de modificar tres tipus diferents de negre de carboni (N134, XPB 171 i Vulcan XC-72). D'altra banda, s'ha grafititzat i extret el N134 prèviament a la modificació per tal de realitzar un estudi sobre la influència de l'estructura superficial així com també de la presència d'impureses sobre la superfície del NC. L'oxidació i l'augment de nitrogen en superfície han estat les dues modificacions que s'han estudiat principalment per tal de comparar el resultat obtingut per les tècniques presentades.

El NC s'ha caracteritzat mitjançant diverses tècniques analítiques per tal de poder obtenir informació sobre els canvis produïts durant la modificació per plasma. Aquestes tècniques inclouen superfície específica, XRD, WAXS, STM per tal d'estudiar els canvis en la seva morfologia i estructura de la superfície. D'altra banda, per tal d'estudiar els canvis en la composició química s'han emprat mesures de pH, valoracions àcid/base i XPS.

Finalment, alguns dels negres de caboni modificats han estat seleccionats per tal de ser avaluats en aplicacions finals tal i com són el reforçament d'elastòmers i la seva activitat vers la reducció d'oxigen utilitzada en les PEMFC per tal d'eliminar els metalls nobles. En el primer cas, s'ha estudiat l'efecte sobre la cinètica i el mecanisme de vulcanització del negre de carboni modificat mitjançant el plasma atmosfèric. Aquest estudi s'ha dut a terme utilitzant dues tècniques complementaries com són les corbes reomètriques i la vulcanització de molècules model (MCV). També s'han realitzat mesures d'adsorció de polímer sobre el NC i Bound Rubber per tal d'estudiar la interacció polímer-càrrega la qual presenta una gran influència en les propietats finals dels materials. D'altra banda, s'ha estudiat també la capacitat del NC modificat vers a la reducció d'oxigen a partir de voltametria cíclica i s'han determinat les propietats del NC que poden influir de manera rellevant en l'activitat cataítica final del NC per a aquesta reacció. Tot i que es necessari fer una preparació posterior al tractament de plasma per a aquesta aplicació, el material final pot contribuir notablement a la eliminació de metalls nobles com a catalitzadors de reducció d'oxigen en les Piles de Combustible.
The present works deals with plasma modification of carbon black (CB). Although this type of treatment is widely used on flat surfaces handling problems should be overcome in order to treat powders as CB. In this study CB has been modified both by means of low-pressure and atmospheric pressure non-equilibrium plasmas. In order to accomplish this objective three different plasma reactors have been set-up; two at low pressure and one at atmospheric pressure working conditions.

Low pressure plasma reactors utilised in this work consist in a down-stream and a fluidised bed system working at Radio Frequency generation power (RF 13,56 MHz). Both reactors have been optimized to treat powder materials. For the down-stream reactor, position of the reactive gas inlet, and treatment conditions such as generator power and time have been studied for oxygen, nitrogen and ammonia treatments. For the fluidized bed reactor the distance of the powder sample to the plasma generation zone, particle size and support porosity have been taken into account.

Concerning atmospheric plasma, a device has been set up in order to adapt a commercial plasma torch (Openair® from Plasmatreat GmbH), for powder modification. An adaptable reactor, a method to introduce the powder in the plasma zone as well as a collecting system had been developed in order to obtain a quasi-continuous modification treatment.

Three types of CBs, N134, XPB 171 and Vulcan XC-72 have been modified in both the down-stream and the atmospheric plasma system. Graphitization and extraction of N134 were also carried out before plasma modification in order to study the effect of both impurities and surface structure of the CB during plasma modification. Surface oxidation and nitrogen enrichment were the two main studied treatments in both systems which allowed comparing their performances.

Unmodified and Modified CBs have been characterised from several points of view. Specific surface area, XRD, WAXS and STM have been used in order to study morphological and surface structure changes. On the other hand, pH measurements, acid/base titration and XPS were employed in order to study the surface chemistry composition changes that had taken place during plasma modification.

Some of the modified CB grades were selected in order to be tested in final applications such as rubber reinforcement and oxygen reduction non-noble metal catalyst for PEMFC. In the first case, the effect of atmospheric plasma treatment on the vulcanization kinetics and mechanism has been evaluated both by rheometre curves and the model compounding approach. Studies about the polymer-filler interaction have been also carried out by calculating bound rubber and adsorption from polymer solution. Last but not least, plasma modification capacity to enhance the oxygen reduction activity to obtain non-noble metal catalysts for PEMFC has been evaluated after the correspondent preparation. Oxygen reduction activity has been studied by means of cyclic voltammetry. The main CB properties which could play an important role in such applications have been analyzed.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Zhao. "Selective Hydrogenation of Butadiene over Non-noble Bimetallic Catalysts." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066102/document.

Full text
Abstract:
Ce travail porte sur la préparation et la caractérisation de catalyseurs bimétalliques Cu-Zn, Ni-Zn et Fe-Zn supportés sur TiO2 avec des rapports atomiques variables et sur l'étude de leurs propriétés catalytiques pour l'hydrogénation sélective d'hydrocarbures polyinsaturés. Les méthodes de co-dépôt-précipitation à l'urée (DPu) et co-dépôt-précipitation à pH fixe (DP8) ont été utilisées pour la préparation des matériaux. Les ions métalliques se déposent séquentiellement sur la surface de TiO2 (selon la séquence CuII < ZnII ?FeII
This work investigates the preparation and characterization of titania-supported non-noble bimetallic Cu-Zn, Ni-Zn and Fe-Zn catalysts with various atomic ratios and their catalytic properties for the selective hydrogenation of polyunsaturated hydrocarbons. Co-deposition-precipitation with urea (DPu) and co-deposition-precipitation at fixed pH (DP8) methods were employed for the samples preparation. The metal ions were sequentially deposited onto the TiO2 surface (the sequence of pH for ions deposition being CuII < ZnII ≈FeII < NiII) during the DPu, while they were simultaneously deposited using DP8 method. After sample reduction at proper temperature (350 °C for Cu-Zn, 450 °C for Ni-Zn and 500 °C for Fe-Zn), XRD and STEM-HAADF coupled with EDS showed that bimetallic nanoparticles were formed in Cu-Zn/TiO2 (Cu3Zn1 or Cu0.9Zn0.1 alloy) and Ni-Zn systems (Ni1Zn1 or Ni4Zn1 alloy) with average particle size smaller than 5 nm. Only metallic Fe was detected by XRD in Fe-Zn/TiO2. Zn is inactive for butadiene selective hydrogenation, and acts as a modifier of the monometallic catalysts whose activity follows the sequence: Cu < Fe < Ni. The addition of Zn slightly decreases the activity and influences the selectivity to butenes, but provides much more stable catalysts. The higher stability of the bimetallic catalysts was ascribed to the formation of lower amount of carbonaceous species during the reaction, resulting from the change in the size of the active metal surface ensembles by alloying with Zn
APA, Harvard, Vancouver, ISO, and other styles
7

Jonsson, Daniel. "Evaluation of Non-Noble Metal Catalysts for CO Oxidation." Thesis, KTH, Skolan för kemivetenskap (CHE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207363.

Full text
Abstract:
The aim of the study is to evaluate the ability of non-noble metal catalysts to function as the commercially used noble metal catalyst. The exhaust gas that was used in the project is generated from a heater developed by ReformTech AB with diesel as fuel. The compound that was focused on is carbon monoxide that has a concentration of 300-750 ppm. The catalysts that were tested are MnO/CeO2, CuO/CeO2 and a Pt/CeO2 catalyst used to compare the non-noble metal catalyst with. The sensitivity against sulfur poisoning was also analyzed by mixing sulfur into the fuel. Analysis of the exhaust gas was done with a micro-GC and the catalysts were also analyzed with SEM before and after exposure of sulfur.   The manganese catalyst with a loading of 7 wt-% did not show any activity against carbon monoxide oxidation. The copper catalysts contained two different loadings of active material, 7 and 14 wt-% and monoliths with 400 and 600 cpsi were used. Both loadings showed good activity against carbon monoxide oxidation.   The most prominent catalyst was the 14 wt-% CuO/CeO2 catalyst with a 600 cpsi monolith because of an increase in surface area. The SEM analysis showed that sulfur was present on the surface when the heater was using diesel with 300 ppm sulfur. The sulfur caused complete deactivation of the non-noble metal catalysts and a small decrease in activity was shown on the noble metal Pt catalyst.
APA, Harvard, Vancouver, ISO, and other styles
8

Wan, Abu Bakar Wan Azelee. "Non-noble metal environmental catalysts : synthesis, characterisation and catalytic activity." Thesis, University of Nottingham, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

OSMIERI, LUIGI. "Non-noble metal catalysts for oxygen reduction reaction in low temperature fuel cells." Doctoral thesis, Politecnico di Torino, 2016. http://hdl.handle.net/11583/2640183.

Full text
Abstract:
Polymer electrolyte membrane fuel cells (PEMFC) are electrochemical devices which can directly convert the chemical energy of a fuel (such as hydrogen or a low-molecular weight alcohol) and an oxidant (i.e. oxygen) into electrical energy with high efficiency. Moreover, due their low operating temperature, they are suitable for automotive or portable applications. However, the slow kinetics of oxygen reduction reaction (ORR) requires the use of costly Pt-based catalysts at the cathode in order to obtain the desired power density values. Nevertheless, the cathode is still responsible for the main voltage loss in the cell. The overall objective of the research carried out in this Ph.D. thesis was the development of Pt-free ORR catalysts starting from different carbon, nitrogen and transition metals precursors. Different synthesis approaches were used in order to obtain an improvement of the activity, and to understand the influence of the synthesis process variables. In particular, the influence of carbon supports (commercial and synthesized in the lab), nitrogen and transition metals precursors, templating agents, number and temperature of pyrolysis were examined. The catalysts produced were characterized by means of several instrumental techniques such as N2 physisorption, XRD, XPS, EDX, SEM, FESEM, TEM, Raman and FTIR. The effect of the presence of different transition metals on the pyrolysis process was investigated by TGA coupled with a mass spectroscopy analysis, in order to have an insight on their influence in the formation of ORR active sites. The activity toward ORR was assessed by RDE-RRDE (rotating disk electrode - rotating ring disk electrode) analysis and by gas-diffusion electrode in a 3-electrodes electrochemical cell configuration. The electrochemical techniques used were cyclic voltammetry (CV), linear sweep voltammetry (LSV), staircase voltammetry (SV), chronoamperometry and electrochemical impedance spectroscopy (EIS). These electrochemical tests were performed in both acid and alkaline conditions, with reference to the potential applications in both H+ and OH– conducing polymer electrolyte membrane fuel cells. This first part of research was carried out in the laboratories of the Gre.En2 (Green Energy and Engineering) Group in the Department of Applied Science and Technology (DISAT) at Politecnico di Torino. Then, in the second part, some of the most promising electrocatalysts in terms of ORR activity were in different types of single PEMFC. In particular, using acidic electrolyte membrane, the tests were performed using H2 or methanol as fuels. In the case of direct methanol fuel cell (DMFC) tests, short-term durability tests were done in order to compare the durability performance of our catalysts with a standard Pt-based catalysts. The tests with alkaline electrolyte membrane were performed using ethanol as fuel. This second part of research was carried out at the Universidad Autonoma de Madrid in the laboratories of the Department of Applied Physical-Chemistry. Here the structure of the thesis: Chapter 1 is a general introduction about the PEMFC fuel cell technology, particularly focusing on the non-noble metal catalysts for ORR as potential alternative to Pt. Chapter 2 is focused on the use of different types of reduced graphene oxide as support for the synthesis of Fe-N/C catalysts. In Chapter 3, a complex between Co ions and a N-containing ligand molecule is impregnated on multi walled carbon nanotubes and pyrolyzed one or two times for producing a Co-N-C catalyst, and the influence of the second pyrolysis on the activity improvement was investigated. Chapter 4 deals the optimization of the synthesis process of a Fe-N-C catalyst using polypyrrole as N source and mesoporous carbon a C-support. In Chapter 5 the study of the influence of different silica templates on the morphology on the ORR activity of a Fe-N-C catalyst synthesized using Fe-phthalocyanine as precursor is presented. In Chapter 6, different Me-phthalocyanines (Me = Fe, Co, Cu, Zn) were used as precursor for the synthesis of Me-N-C catalysts using SBA-15 silica as hard template. The influence of the different transition metals on the pyrolysis process and on the ORR activity and selectivity toward a complete 4 e- oxygen reduction was investigated in both acid and alkaline conditions. A detailed kinetic analysis in acid conditions is also presented. The most active catalyst was tested in different types of PEMFCs. Finally, in Chapter 7, the influence of four different carbon supports on the ORR activity of Fe-N/C catalysts in acid and alkaline conditions as well as the performance in single PEMFC is examined. The general conclusions of the thesis are presented in Chapter 8.
APA, Harvard, Vancouver, ISO, and other styles
10

Blake, John. "Tungsten based electrocatalysts as non-noble alternatives to common platinum based fuel cell catalysts." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/360211/.

Full text
Abstract:
Today fuel cells are far from being common place in the commercial market, primarily due to their high cost. The cost of such a system is largely determined by the platinum based catalysts used at both the anode and cathode of the fuel cell. If a non-noble fuel cell electrocatalyst could be used at either of these electrodes, the cost of a fuel cell system would be drastically reduced. Highthroughput physical vapour deposition and the modification of single crystal surfaces, has been used to synthesise candidate non-noble electrocatalysts which were then screened to determine their activity. Amorphous tungsten carbide thin films were shown to be catalytically active towards both the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR). The constituent elements were seen to be less active than the alloys. These results are consistent with the literature where it has also been seen that WC is active, with W2C showing poorer activity.1,2 The trend in current density with respect to alloy composition confirms the results in the literature, with the highest activity seen at compositions corresponding to the WC phase, and a local minima in activity seen at compositions corresponding to the W2C phase. Metastable and amorphous intertransition metal alloys of WCu are shown to catalyse both the HER and the HOR. The constituent metals again exhibit poor activity. The results are consistent with ab initio calculations predicting HER activity for Cu overlayers on W, with the detected changes of the density of states (DOS) at the Fermi level associated with alloy formation.3 Two maxima in the HER activity are observed as a function of composition. This activity is associated with a metastable phase at W20Cu80 and a second at W50Cu50. The alloy at 50 at% also shows a maximum in the HOR activity, whereas the phase at W20Cu80 is not HOR active. The W20Cu80 phase is found to beoxygen covered at the HOR potential, explaining its inactivity. These results highlight the potentials of developing non-noble metal alloy catalysts for hydrogen fuel cells.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Non-noble catalyst"

1

Klein Gebbink, Robertus J. M., and Marc-Etienne Moret, eds. Non-Noble Metal Catalysis. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527699087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Zhongwei, Jean-Pol Dodelet, and Jiujun Zhang Dodelet, eds. Non-Noble Metal Fuel Cell Catalysts. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Deng, You Quan. Non-steady behaviour in the oxidation of methane over supported noble-metal catalysts. Portsmouth: University of Portsmouth, Division of Chemistry, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Zhongwei, Jiujun Zhang, and Jean-Pol Dodelet. Non-Noble Metal Fuel Cell Catalysts. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Zhongwei, Jiujun Zhang, and Jean-Pol Dodelet. Non-Noble Metal Fuel Cell Catalysts. Wiley & Sons, Limited, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Zhongwei, Jiujun Zhang, and Jean-Pol Dodelet. Non-Noble Metal Fuel Cell Catalysts. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Zhongwei, Jiujun Zhang, and Jean-Pol Dodelet. Non-Noble Metal Fuel Cell Catalysts. Wiley-VCH Verlag GmbH, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Zhongwei, Jiujun Zhang, and Jean-Pol Dodelet. Non-Noble Metal Fuel Cell Catalysts. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moret, Marc-Etienne, and Robertus J. M. Klein Gebbink. Non-Noble Metal Catalysis: Molecular Approaches and Reactions. Wiley & Sons, Incorporated, John, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moret, Marc-Etienne, and Robertus J. M. Klein Gebbink. Non-Noble Metal Catalysis: Molecular Approaches and Reactions. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Non-noble catalyst"

1

Mondal, Bhaskar, Frank Neese, and Shengfa Ye. "Computational Insights into Chemical Reactivity and Road to Catalyst Design: The Paradigm of CO2 Hydrogenation." In Non-Noble Metal Catalysis, 33–48. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mankad, Neal P. "Catalysis with Multinuclear Complexes." In Non-Noble Metal Catalysis, 49–68. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gieshoff, Tim N., and Axel Jacobi von Wangelin. "CC Hydrogenations with Iron Group Metal Catalysts." In Non-Noble Metal Catalysis, 97–126. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chirila, Andrei, Braja Gopal Das, Petrus F. Kuijpers, Vivek Sinha, and Bas de Bruin. "Application of Stimuli-Responsive and “Non-innocent” Ligands in Base Metal Catalysis." In Non-Noble Metal Catalysis, 1–31. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Darcel, Christophe, Jean-Baptiste Sortais, Duo Wei, and Antoine Bruneau-Voisine. "Iron-, Cobalt-, and Manganese-Catalyzed Hydrosilylation of Carbonyl Compounds and Carbon Dioxide." In Non-Noble Metal Catalysis, 241–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kneebone, Jared L., Jeffrey D. Sears, and Michael L. Neidig. "Reactive Intermediates and Mechanism in Iron-Catalyzed Cross-coupling." In Non-Noble Metal Catalysis, 265–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Planas, Oriol, Christopher J. Whiteoak, and Xavi Ribas. "Recent Advances in Cobalt-Catalyzed Cross-coupling Reactions." In Non-Noble Metal Catalysis, 297–328. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jacquet, Jérémy, Louis Fensterbank, and Marine Desage-El Murr. "Trifluoromethylation and Related Reactions." In Non-Noble Metal Catalysis, 329–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ghosh, Pradip, Marc-Etienne Moret, and Robertus J. M. Klein Gebbink. "Catalytic Oxygenation of CC and CH Bonds." In Non-Noble Metal Catalysis, 355–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gandeepan, Parthasarathy, and Lutz Ackermann. "Organometallic Chelation-Assisted C−H Functionalization." In Non-Noble Metal Catalysis, 391–423. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Non-noble catalyst"

1

Ghosh, Bankim B., Prokash Chandra Roy, Mita Ghosh, Paritosh Bhattacharya, Rajsekhar Panua, and Prasanta K. Santra. "Control of S.I. Engine Exhaust Emissions Using Non-Precious Catalyst (ZSM-5) Supported Bimetals and Noble Metals as Catalyst." In ASME 2005 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ices2005-1025.

Full text
Abstract:
Three Way Catalysts (TWC) are extensively used for simultaneous control of three principal automotive pollutants, namely carbon monoxide (CO), Oxides of nitrogen (NOx), and hydrocarbon (HC). Most of works on three way catalytic converter have been carried out with noble metals such as Platinum, Rhodium, and Iridium have been tried individually and in different combinations and proportions. Noble metal catalysts give very good performance of reduction of (NOx), CO and HC in the narrow range of stoichiometric Air Fuel ratio. Noble metals are costly and not abundantly available. These draw backs of the noble metal catalysts have inspired to search for the alternative catalysts, which will perform well over the wide range of A/F ratio and are economical and abundantly available. This paper discusses the processing of ZSM-5 to Cu-Ion- Exchanged ZSM-5, ZSM-5 supported Cu-Pt bimetallic catalyst and Cu-Rh bimetallic catalyst and placing them in a three staged converter to study the reduction efficiencies of exhaust emissions CO, NOx, and HC in a 800 cc Maruti S. I. Engine. The experiments are carried out at 1500 rpm, 17.6 A/F ratio, different catalyst bed temperatures and different engine loads 0%, 17.5%, 35%, 52.5%, and 70% of full load. The results achieved are the maximum reduction of CO 90% at 375 °C NOx 90% at 375 °C and HC 61% at 380 °C. The same engine was also run for Noble metal converter (NMC) (EURO-II) purchased from an authorized Maruti distributor and the maximum reduction achieved were CO 89% at 375° C, NOx 91% at 375° C, and HC 70% at 390° C comparable to Zeolite Catalytic Converter (ZCC).
APA, Harvard, Vancouver, ISO, and other styles
2

Muthiya, S. Jenoris, Induja Saravanan, Gajalakshmi Balachandran, and 1Lt P. S. Raghavan. "Experimental Investigation in Diesel Oxidation Catalyst by Developing a Novel Catalytic Materials for the Control of HC, CO and Smoke Emissions." In International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-28-0458.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">Diesel-powered engines are used worldwide for efficient transportation and stationary power generation. The significant drawback of a diesel engine is its harmful emissions. The stringent emission norms enforced by the different organization demands effective catalyst system to control the gaseous emissions. Diesel oxidation catalysts are the extensively used technique for diesel engines to control HC and CO emissions. Currently the catalyst in the diesel oxidation system employs precious metals such as Pt/Pd/Rh to reduce the emissions and makes the DOC system expensive. This paper presents a cost-effective catalyst prepared to employ non-noble mixed oxides of copper and nickel supported on non-conventional support (i.e.) ceria doped calcium borophosphates (Ce-SCaPB). Initially, ceramic beads (5mm X 5mm) were coated with (Ce-SCaPB) support material. Secondly, the copper and nickel salts were deposited on the Ce-SCaPB coated ceramic beads and subsequently reduced and calcined. The crystallinity and phase formation was studied using XRD technique and SEM image showed particle size ranging between 40 - 50 nm. These catalyst coated beads were loaded into the fabricated DOC reactor and was retrofitted into the tailpipe of the engine exhaust. The experimental emission testing was carried out in a single-cylinder diesel engine coupled with eddy current dynamometer. In engine testing, catalytic material are tested individually to evaluate his reduction percentage. The engine test was conducted under different engine loads (0-100%) and the emission readings were taken for each load. Uncertainty analysis is calculated for the results and the results showed a higher reduction in CO, HC and smoke emissions.</div></div>
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Li, Guoshun Pan, Chunli Zou, Xiaolei Shi, and Yuyu Liu. "Atomically smooth gallium nitride surfaces generated by chemical mechanical polishing with non-noble metal catalyst(Fe-Nx/C) in acid solution." In 2014 International Conference on Planarization/CMP Technology (ICPT). IEEE, 2014. http://dx.doi.org/10.1109/icpt.2014.7017289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oncescu, Vlad, and David Erickson. "A Microfabricated Enzyme-Free Glucose Fuel Cell for Implantable Devices." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62893.

Full text
Abstract:
In the past decade the scientific community has showed considerable interest in the development of implantable medical devices. Such devices have low power requirements and can potentially be operated through fuel cells using reactants present in the body such as glucose and oxygen instead of non-rechargeable lithium batteries. In this paper we present a thin, enzyme-free fuel cell with high current density and good stability at a current density of 10μA cm−2. The fuel cell uses a stacked electrode design in order to achieve glucose and oxygen separation. In addition, it uses a porous carbon paper support for the anodic catalyst layer which reduces the amount of platinum or other noble metal catalysts required for fabricating high surface area electrodes with good reactivity. The peak power output of the fuel cell is approximately 2μW cm−2 and has a sustainable power density of 1.5μW cm−2 at 10μA cm−2. An analysis on the effects of electrode thickness and inter electrode gap on the maximum power output of the fuel cell is also performed.
APA, Harvard, Vancouver, ISO, and other styles
5

Depiak, A., and I. Wierzba. "The Catalytic Oxidation of Heated Lean Homogeneously Premixed Gaseous-Fuel Air Streams." In ASME 2002 Engineering Technology Conference on Energy. ASMEDC, 2002. http://dx.doi.org/10.1115/etce2002/cae-29065.

Full text
Abstract:
Results are presented of an experimental laboratory investigation of the oxidation reactions of heated low velocity streams of homogeneous lean fuel-air mixtures within a packed bed tubular reactor at atmospheric pressure in the presence of non-noble metal oxides catalysts. The main fuel considered was methane, however, other common gaseous fuels, i.e. propane, carbon monoxide, hydrogen and ethylene were also examined for comparative purposes. It was shown that binary cobalt oxide/chromium oxide catalysts can be effective in the oxidation of very lean fuel-air mixtures. Furthermore, there is an optimum value of their mass ratio that could produce a significant improvement to the low temperature oxidation of the lean mixtures examined and the corresponding resulting emissions.
APA, Harvard, Vancouver, ISO, and other styles
6

Gaudry, Émilie. "The complex energy landscape of non-noble quasicrystalline approximant surfaces induced by their bulk cluster substructure: application to catalysis." In Aperiodic 2018 ("9th Conference on Aperiodic Crystals"). Iowa State University, Digital Press, 2018. http://dx.doi.org/10.31274/aperiodic2018-180810-72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography