Academic literature on the topic 'Non-negative'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-negative.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-negative"
Anděl, Martin. "Non-negative linear processes." Applications of Mathematics 36, no. 4 (1991): 277–83. http://dx.doi.org/10.21136/am.1991.104466.
Full textTaylor, Mark C., Jacques Derrida, Sanford Budick, and Wolfgang Iser. "Non-Negative Negative Atheology." Diacritics 20, no. 4 (1990): 2. http://dx.doi.org/10.2307/465200.
Full textMohapl, Jaroslav. "On weakly convergent nets in spaces of non-negative measures." Czechoslovak Mathematical Journal 40, no. 3 (1990): 408–21. http://dx.doi.org/10.21136/cmj.1990.102393.
Full textGrone, Robert, and Stephen Pierce. "Decomposably non-negative matrices." Linear and Multilinear Algebra 41, no. 1 (July 1996): 63–79. http://dx.doi.org/10.1080/03081089608818462.
Full textMathai, Varghese. "Non-negative scalar curvature." Annals of Global Analysis and Geometry 10, no. 2 (1992): 103–23. http://dx.doi.org/10.1007/bf00130915.
Full textAnděl, Jiří. "NON-NEGATIVE AUTOREGRESSIVE PROCESSES." Journal of Time Series Analysis 10, no. 1 (January 1989): 1–11. http://dx.doi.org/10.1111/j.1467-9892.1989.tb00011.x.
Full textHong-zhi, An. "NON-NEGATIVE AUTOREGRESSIVE MODELS." Journal of Time Series Analysis 13, no. 4 (July 1992): 283–95. http://dx.doi.org/10.1111/j.1467-9892.1992.tb00108.x.
Full textWever, U. "Non-negative exponential splines." Computer-Aided Design 20, no. 1 (January 1988): 11–16. http://dx.doi.org/10.1016/0010-4485(88)90136-4.
Full textPhuong, Dinh Thi Dong, and Hiromitsu Shimakawa. "Analyzing Learning Behavior of Student Persona toward Non-Negative Matrix Factorization." International Journal of Information and Education Technology 5, no. 11 (2015): 826–31. http://dx.doi.org/10.7763/ijiet.2015.v5.620.
Full textAli, Humayra Binte, David M. W. Powers, Xibin Jia, and Yanhua Zhang. "Extended Non-negative Matrix Factorization for Face and Facial Expression Recognition." International Journal of Machine Learning and Computing 5, no. 2 (April 2015): 142–47. http://dx.doi.org/10.7763/ijmlc.2015.v5.498.
Full textDissertations / Theses on the topic "Non-negative"
Dirdal, Christopher Andrew. "Negative Refraction in Non-Magnetic Metamaterials." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19337.
Full textKudzin, Matthew. "Cohomogeneity one manifolds of non-negative curvature." [Bloomington, Ind.] : Indiana University, 2004. http://wwwlib.umi.com/dissertations/fullcit/3162245.
Full textTitle from PDF t.p. (viewed Dec. 1, 2008). Source: Dissertation Abstracts International, Volume: 66-01, Section: B, page: 0307. Chair: Ji-Ping Sha.
Sanja, Brdar. "Non-negative matrix factorization for integrative clustering." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2016. https://www.cris.uns.ac.rs/record.jsf?recordId=101841&source=NDLTD&language=en.
Full textПредмет истраживања докторске дисертације су алгоритми кластеровања,односно груписања података, и могућности њиховог унапређењаинтегративним приступом у циљу повећања поузданости, робустности наприсуство шума и екстремних вредности у подацима, омогућавања фузијеподатака. У дисертацији су предложене методе засноване на ненегативнојфакторизацији матрице. Методе су успешно имплементиране и детаљноанализиране на разноврсним подацима са UCI репозиторијума исинтетичким подацима које се типично користе за евалуацију новихалгоритама и поређење са већ постојећим методама. Већи деодисертације посвећен је примени у домену биоинформатике која обилујехетерогеним подацима и бројним изазовним задацима. Евалуација јеизвршена на подацима из домена функционалне геномике, геномике рака иметагеномике.
Predmet istraživanja doktorske disertacije su algoritmi klasterovanja,odnosno grupisanja podataka, i mogućnosti njihovog unapređenjaintegrativnim pristupom u cilju povećanja pouzdanosti, robustnosti naprisustvo šuma i ekstremnih vrednosti u podacima, omogućavanja fuzijepodataka. U disertaciji su predložene metode zasnovane na nenegativnojfaktorizaciji matrice. Metode su uspešno implementirane i detaljnoanalizirane na raznovrsnim podacima sa UCI repozitorijuma isintetičkim podacima koje se tipično koriste za evaluaciju novihalgoritama i poređenje sa već postojećim metodama. Veći deodisertacije posvećen je primeni u domenu bioinformatike koja obilujeheterogenim podacima i brojnim izazovnim zadacima. Evaluacija jeizvršena na podacima iz domena funkcionalne genomike, genomike raka imetagenomike.
Xue, Yun. "Non-negative matrix factorization for face recognition." HKBU Institutional Repository, 2007. http://repository.hkbu.edu.hk/etd_ra/815.
Full textChreiky, Robert. "Informed Non-Negative Matrix Factorization for Source Apportionment." Thesis, Littoral, 2017. http://www.theses.fr/2017DUNK0464/document.
Full textSource apportionment for air pollution may be formulated as a NMF problem by decomposing the data matrix X into a matrix product of two factors G and F, respectively the contribution matrix and the profile matrix. Usually, chemical data are corrupted with a significant proportion of abnormal data. Despite the interest for the community for NMF methods, they suffer from a lack of robustness to a few abnormal data and to initial conditions and they generally provide multiple minima. To this end, this thesis is oriented on one hand towards robust NMF methods and on the other hand on informed NMF by using some specific prior knowledge. Two types of knowlodge are introduced on the profile matrix F. The first assumption is the exact knowledge on some of flexible components of matrix F and the second hypothesis is the sum-to-1 constraint on each row of the matrix F. A parametrization able to deal with both information is developed and update rules are proposed in the space of constraints at each iteration. These formulations have been appliede to two kind of robust cost functions, namely, the weighted Huber cost function and the weighted αβ divergence. The target application-namely, identify the sources of particulate matter in the air in the coastal area of northern France - shows relevance of the proposed methods. In the numerous experiments conducted on both synthetic and real data, the effect and the relevance of the different information is highlighted to make the factorization results more reliable
Ceruelo, Víctor Pablos. "Negative non-ground queries in well founded semantics." Master's thesis, Faculdade de Ciências e Tecnologia, 2009. http://hdl.handle.net/10362/6163.
Full textThe existing implementations of Well Founded Semantics restrict or forbid the use of variables when using negative queries, something which is essential for using logic programming as a programming language. We present a procedure to obtain results under the Well Founded Semantics that removes this constraint by combining two techniques: the transformation presented in [MMNMH08] to obtain from a program its dual and the derivation procedure presented in [PAP+91] to determine if a query belongs or not to the Well Founded Model of a program. Some problems arise during their combination, mainly due to the original environment for which each one was designed: results obtained in the first one obey a variant of Kunen Semantics and non-ground programs are not allowed (or previously grounded) in the second one. Most of these problems were solved by using abductive techniques, which lead us to observe that the existing implementations of abduction in logic programming disallow the use of variables. The reason for that is the impossibility to evaluate non-ground queries, so it seemed interesting to develop an abductive framework making use of our negation system. Both goals are achieved in this thesis: the capability of solving non-ground queries under Well Founded Semantics and the use of variables in abductive logic programming.
陳鋼 and Kong Chan. "Linear preservers of operators with non-negative generalized numericalranges." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B30488448.
Full textRolet, Antoine. "Optimal Transport Dictionary Learning and Non-negative Matrix Factorization." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263775.
Full textKunert, Aaron [Verfasser]. "Facial Structure of Cones of non-negative Forms / Aaron Kunert." Konstanz : Bibliothek der Universität Konstanz, 2014. http://d-nb.info/105323127X/34.
Full textLim, Poon Chuan Adrian. "Path integrals on a compact manifold with non-negative curvature." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3211935.
Full textTitle from first page of PDF file (viewed June 21, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 97-100).
Books on the topic "Non-negative"
Naik, Ganesh R., ed. Non-negative Matrix Factorization Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48331-2.
Full textBerman, Abraham. Nonnegative matrices in the mathematical sciences. Philadelphia: Society for Industrial and Applied Mathematics, 1994.
Find full textEnnis, Marguerite. Modelling non-negative outcomes using B-splines. Toronto: [s.n.], 1996.
Find full textDearricott, Owen, Fernando Galaz-García, Lee Kennard, Catherine Searle, Gregor Weingart, and Wolfgang Ziller. Geometry of Manifolds with Non-negative Sectional Curvature. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06373-7.
Full textNonnegative matrices. New York: Wiley, 1988.
Find full textBapat, R. B. Nonnegative matrices and applications. Cambridge, UK: Cambridge University Press, 1997.
Find full textMinc, Henryk. Nonnegative matrices. New York: Wiley, 1988.
Find full textAlexander, Graham. Nonnegative matrices and applicable topics in linear algebra. Chichester: E. Horwood, 1987.
Find full textNeumann, Michael, 1946 Nov. 23- and Stern Ronald J, eds. Nonnegative matrices in dynamic systems. New York: Wiley, 1989.
Find full textSachkov, Vladimir Nikolaevich. Kombinatorika neotrit︠s︡atelʹnykh matrit︠s︡. Moskva: Nauch. izd-vo "TVP", 2000.
Find full textBook chapters on the topic "Non-negative"
Berman, Abraham, and Naomi Shaked-Monderer. "Non-negative Matrices and Digraphs." In Computational Complexity, 2082–95. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1800-9_132.
Full textHyvärinen, Aapo, Jarmo Hurri, and Patrik O. Hoyer. "Overcomplete and Non-negative Models." In Computational Imaging and Vision, 277–93. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-491-1_13.
Full textBerman, Abraham, and Naomi Shaked-Monderer. "Non-negative Matrices and Digraphs." In Encyclopedia of Complexity and Systems Science, 6239–52. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_368.
Full textLopes, Noel, and Bernardete Ribeiro. "Non-Negative Matrix Factorization (NMF)." In Studies in Big Data, 127–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06938-8_7.
Full textPatrick, Sheila, and Brian I. Duerden. "Non-Sporing Gram-Negative Anaerobes." In Principles and Practice of Clinical Bacteriology, 541–56. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/9780470017968.ch45.
Full textSao, Piyush, and Ramakrishnan Kannan. "Multifrontal Non-negative Matrix Factorization." In Parallel Processing and Applied Mathematics, 543–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43229-4_46.
Full textPannu, Neesh, Xiaoyan Wen, John A. Kellum, John Fildes, N. Al-Subaie, Mark Hamilton, Susan M. Lareau, et al. "Negative or Non-therapeutic Celiotomy." In Encyclopedia of Intensive Care Medicine, 1518. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-00418-6_1933.
Full textBenlamine, Kaoutar, Nistor Grozavu, Younès Bennani, and Basarab Matei. "Collaborative Non-negative Matrix Factorization." In Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series, 655–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30490-4_52.
Full textSchmidt, Mikkel N., Ole Winther, and Lars Kai Hansen. "Bayesian Non-negative Matrix Factorization." In Independent Component Analysis and Signal Separation, 540–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00599-2_68.
Full textPark, Sun. "Personalized Document Summarization Using Non-negative Semantic Feature and Non-negative Semantic Variable." In Lecture Notes in Computer Science, 298–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88906-9_38.
Full textConference papers on the topic "Non-negative"
Gruninger, John. "Non-negative factorization of non-negative matrices." In Remote Sensing, edited by Lorenzo Bruzzone. SPIE, 2007. http://dx.doi.org/10.1117/12.738381.
Full textHamar, Jarle Bauck, Rama Sanand Doddipatla, Torbjorn Svendsen, and Thippur Sreenivas. "Non-negative durational HMM." In 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2013. http://dx.doi.org/10.1109/mlsp.2013.6661976.
Full textLuo, Dijun, Chris Ding, Heng Huang, and Tao Li. "Non-negative Laplacian Embedding." In 2009 Ninth IEEE International Conference on Data Mining (ICDM). IEEE, 2009. http://dx.doi.org/10.1109/icdm.2009.74.
Full textJianchao Yang, Shuicheng Yang, Yun Fu, Xuelong Li, and Thomas Huang. "Non-negative graph embedding." In 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2008. http://dx.doi.org/10.1109/cvpr.2008.4587665.
Full textLu, Deji, Yu Sun, and Suiren Wan. "Brain tumor classification using non-negative and local non-negative matrix factorization." In 2013 IEEE International Conference on Signal Processing, Communications and Computing. IEEE, 2013. http://dx.doi.org/10.1109/icspcc.2013.6664143.
Full textMorup, Morten, Kristoffer H. Madsen, and Lars K. Hansen. "Shifted Non-Negative Matrix Factorization." In 2007 IEEE Workshop on Machine Learning for Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/mlsp.2007.4414296.
Full textTakeuchi, Koh, Ryota Tomioka, Katsuhiko Ishiguro, Akisato Kimura, and Hiroshi Sawada. "Non-negative Multiple Tensor Factorization." In 2013 IEEE International Conference on Data Mining (ICDM). IEEE, 2013. http://dx.doi.org/10.1109/icdm.2013.83.
Full textWenwu Wang. "Convolutive non-negative sparse coding." In 2008 IEEE International Joint Conference on Neural Networks (IJCNN 2008 - Hong Kong). IEEE, 2008. http://dx.doi.org/10.1109/ijcnn.2008.4634325.
Full textLenz, R., and T. H. Bui. "Recognition of non-negative patterns." In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1334575.
Full textLi, Le, and Yu-Jin Zhang. "Non-negative Matrix-Set Factorization." In Fourth International Conference on Image and Graphics (ICIG 2007). IEEE, 2007. http://dx.doi.org/10.1109/icig.2007.103.
Full textReports on the topic "Non-negative"
Kounchev, Ognyan, and Hermann Render. Study of Non-negative Exponential Polynomials. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, August 2018. http://dx.doi.org/10.7546/crabs.2018.08.03.
Full textG.W. Hammett, S.C. Jardin, and B.C. Stratton. Non-existence of Normal Tokamak Equilibria with Negative Central Current. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/812029.
Full textAlexandrov, Boian, Velimir Valentinov Vesselinov, and Hristo Nikolov Djidjev. Non-negative Tensor Factorization for Robust Exploratory Big-Data Analytics. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1417803.
Full textCarnahan, B. Bilateral agreements providing negative security assurances to states party to the Nuclear Non-Proliferation Treaty. [Negative Security Assurances]. Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/7156719.
Full textMontes, Rodrigo Ristow. A Remark on Compact Minimal Surfaces in S5 With Non-Negative Gaussian Curvature. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-11-2008-41-48.
Full textSong, Sanga, and Hyunjoo Im. Consumers' Negative Electronic Word of Mouth: Non-complainers, Bad-mouthers, Dissatisfied complainers, and Satisfied complainers. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-390.
Full textWindmeijer, Frank, Silvana Tenreyro, and Joao Santos Silva Santos Silva. Is it different for zeros? Discriminating between models for non-negative data with many zeros. Institute for Fiscal Studies, July 2010. http://dx.doi.org/10.1920/wp.cem.2010.2010.
Full textMorphett, Jane, Alexandra Whittaker, Amy Reichelt, and Mark Hutchinson. Perineuronal net structure as a non-cellular mechanism of affective state, a scoping review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2021. http://dx.doi.org/10.37766/inplasy2021.8.0075.
Full textBusso, Matías, Juanita Camacho, Julián Messina, and Guadalupe Montenegro. Social Protection and Informality in Latin America during the COVID-19 Pandemic. Inter-American Development Bank, November 2020. http://dx.doi.org/10.18235/0002865.
Full textKapelyushnyi, Anatolyi. TRANSFORMATION OF FORMS OF DEGREES OF COMPARISON OF ADJECTIVES IN LIVE TELEVISION BROADCASTING. Ivan Franko National University of Lviv, March 2021. http://dx.doi.org/10.30970/vjo.2021.50.11105.
Full text