Journal articles on the topic 'Non-Kähler geometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Non-Kähler geometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dai, Song. "Lower order tensors in non-Kähler geometry and non-Kähler geometric flow." Annals of Global Analysis and Geometry 50, no. 4 (June 6, 2016): 395–418. http://dx.doi.org/10.1007/s10455-016-9518-0.
Full textBroder, Kyle. "The Schwarz lemma in Kähler and non-Kähler geometry." Asian Journal of Mathematics 27, no. 1 (2023): 121–34. http://dx.doi.org/10.4310/ajm.2023.v27.n1.a5.
Full textFino, Anna, and Adriano Tomassini. "Non-Kähler solvmanifolds with generalized Kähler structure." Journal of Symplectic Geometry 7, no. 2 (2009): 1–14. http://dx.doi.org/10.4310/jsg.2009.v7.n2.a1.
Full textVerbitsky, M. S., V. Vuletescu, and L. Ornea. "Classification of non-Kähler surfaces and locally conformally Kähler geometry." Russian Mathematical Surveys 76, no. 2 (April 1, 2021): 261–89. http://dx.doi.org/10.1070/rm9858.
Full textZheng, Fangyang. "Some recent progress in non-Kähler geometry." Science China Mathematics 62, no. 11 (May 22, 2019): 2423–34. http://dx.doi.org/10.1007/s11425-019-9528-1.
Full textAlessandrini, Lucia, and Giovanni Bassanelli. "Positive $$\partial \bar \partial - closed$$ currents and non-Kähler geometrycurrents and non-Kähler geometry." Journal of Geometric Analysis 2, no. 4 (July 1992): 291–316. http://dx.doi.org/10.1007/bf02934583.
Full textCortés, Vicente, and Liana David. "Twist, elementary deformation and K/K correspondence in generalized geometry." International Journal of Mathematics 31, no. 10 (September 2020): 2050078. http://dx.doi.org/10.1142/s0129167x20500780.
Full textDunajski, Maciej. "Null Kähler Geometry and Isomonodromic Deformations." Communications in Mathematical Physics 391, no. 1 (December 8, 2021): 77–105. http://dx.doi.org/10.1007/s00220-021-04270-0.
Full textYANG, BO. "A CHARACTERIZATION OF NONCOMPACT KOISO-TYPE SOLITONS." International Journal of Mathematics 23, no. 05 (May 2012): 1250054. http://dx.doi.org/10.1142/s0129167x12500541.
Full textYau, Shing-Tung. "Existence of canonical metrics in non-Kähler geometry." Notices of the International Congress of Chinese Mathematicians 9, no. 1 (2021): 1–10. http://dx.doi.org/10.4310/iccm.2021.v9.n1.a1.
Full textABREU, MIGUEL. "KÄHLER GEOMETRY OF TORIC VARIETIES AND EXTREMAL METRICS." International Journal of Mathematics 09, no. 06 (September 1998): 641–51. http://dx.doi.org/10.1142/s0129167x98000282.
Full textLEBRUN, CLAUDE. "FANO MANIFOLDS, CONTACT STRUCTURES, AND QUATERNIONIC GEOMETRY." International Journal of Mathematics 06, no. 03 (June 1995): 419–37. http://dx.doi.org/10.1142/s0129167x95000146.
Full textAngella, Daniele, Adriano Tomassini, and Misha Verbitsky. "On non-Kähler degrees of complex manifolds." Advances in Geometry 19, no. 1 (January 28, 2019): 65–69. http://dx.doi.org/10.1515/advgeom-2018-0026.
Full textCastrillón López, M., P. M. Gadea, and J. A. Oubiña. "Homogeneous Quaternionic Kähler Structures on Eight-Dimensional Non-Compact Quaternion-Kähler Symmetric Spaces." Mathematical Physics, Analysis and Geometry 12, no. 1 (December 13, 2008): 47–74. http://dx.doi.org/10.1007/s11040-008-9051-x.
Full textVACARU, SERGIU I. "FINSLER AND LAGRANGE GEOMETRIES IN EINSTEIN AND STRING GRAVITY." International Journal of Geometric Methods in Modern Physics 05, no. 04 (June 2008): 473–511. http://dx.doi.org/10.1142/s0219887808002898.
Full textFine, Joel, and Dmitri Panov. "Hyperbolic geometry and non-Kähler manifolds with trivial canonical bundle." Geometry & Topology 14, no. 3 (July 13, 2010): 1723–63. http://dx.doi.org/10.2140/gt.2010.14.1723.
Full textParton, Maurizio, and Victor Vuletescu. "Examples of non-trivial rank in locally conformal Kähler geometry." Mathematische Zeitschrift 270, no. 1-2 (October 28, 2010): 179–87. http://dx.doi.org/10.1007/s00209-010-0791-5.
Full textBoucetta, Mohamed. "On the Hermitian structures of the sequence of tangent bundles of an affine manifold endowed with a Riemannian metric." Complex Manifolds 9, no. 1 (January 1, 2022): 18–51. http://dx.doi.org/10.1515/coma-2021-0128.
Full textYu, Tony Yue. "Gromov compactness in non-archimedean analytic geometry." Journal für die reine und angewandte Mathematik (Crelles Journal) 2018, no. 741 (August 1, 2018): 179–210. http://dx.doi.org/10.1515/crelle-2015-0077.
Full textDI SCALA, ANTONIO J., ANDREA LOI, and FABIO ZUDDAS. "RIEMANNIAN GEOMETRY OF HARTOGS DOMAINS." International Journal of Mathematics 20, no. 02 (February 2009): 139–48. http://dx.doi.org/10.1142/s0129167x09005236.
Full textDi Scala, Antonio J., Naohiko Kasuya, and Daniele Zuddas. "Non-Kähler complex structures on $\mathbb{R}^4$, II." Journal of Symplectic Geometry 16, no. 3 (2018): 631–44. http://dx.doi.org/10.4310/jsg.2018.v16.n3.a2.
Full textPopovici, Dan. "Non-Kähler Mirror Symmetry of the Iwasawa Manifold." International Mathematics Research Notices 2020, no. 23 (November 7, 2018): 9471–538. http://dx.doi.org/10.1093/imrn/rny256.
Full textKruglikov, Boris, Vladimir Matveev, and Dennis The. "Submaximally symmetric c-projective structures." International Journal of Mathematics 27, no. 03 (March 2016): 1650022. http://dx.doi.org/10.1142/s0129167x16500221.
Full textLin, Hsueh-Yung. "Compact Kähler threefolds with non-nef canonical bundle and symplectic geometry." Mathematical Research Letters 21, no. 6 (2014): 1341–52. http://dx.doi.org/10.4310/mrl.2014.v21.n6.a7.
Full textRogov, Vasily. "Complex Geometry of Iwasawa Manifolds." International Mathematics Research Notices 2020, no. 23 (November 7, 2018): 9420–39. http://dx.doi.org/10.1093/imrn/rny230.
Full textBagaglini, Leonardo. "Non-orientable three-submanifolds of G2-manifolds." Advances in Geometry 19, no. 3 (July 26, 2019): 401–14. http://dx.doi.org/10.1515/advgeom-2018-0023.
Full textSano, Taro. "Examples of non‐Kähler Calabi–Yau manifolds with arbitrarily large b2." Journal of Topology 14, no. 4 (November 24, 2021): 1448–60. http://dx.doi.org/10.1112/topo.12212.
Full textChang, Yu-Lin. "Some results on compact Kähler surfaces with non-positive bisectional curvature." Geometriae Dedicata 145, no. 1 (July 29, 2009): 65–70. http://dx.doi.org/10.1007/s10711-009-9403-0.
Full textZheng, Fangyang. "Examples of non-positively curved Kähler manifolds." Communications in Analysis and Geometry 4, no. 1 (1996): 129–60. http://dx.doi.org/10.4310/cag.1996.v4.n1.a3.
Full textMartelli, Dario, and James Sparks. "Resolutions of non-regular Ricci-flat Kähler cones." Journal of Geometry and Physics 59, no. 8 (August 2009): 1175–95. http://dx.doi.org/10.1016/j.geomphys.2009.06.005.
Full textKasuya, Hisashi. "Hodge symmetry and decomposition on non-Kähler solvmanifolds." Journal of Geometry and Physics 76 (February 2014): 61–65. http://dx.doi.org/10.1016/j.geomphys.2013.10.012.
Full textChrysikos, Ioannis, and Yusuke Sakane. "Homogeneous Einstein metrics on non-Kähler C-spaces." Journal of Geometry and Physics 160 (February 2021): 103996. http://dx.doi.org/10.1016/j.geomphys.2020.103996.
Full textHashimoto, Kenji, and Taro Sano. "Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large b2." Geometry & Topology 27, no. 1 (May 1, 2023): 131–52. http://dx.doi.org/10.2140/gt.2023.27.131.
Full textAlonso, Izar, and Francesca Salvatore. "On the existence of balanced metrics on six-manifolds of cohomogeneity one." Annals of Global Analysis and Geometry 61, no. 2 (November 22, 2021): 309–31. http://dx.doi.org/10.1007/s10455-021-09807-z.
Full textMOLITOR, MATHIEU. "REMARKS ON THE STATISTICAL ORIGIN OF THE GEOMETRICAL FORMULATION OF QUANTUM MECHANICS." International Journal of Geometric Methods in Modern Physics 09, no. 03 (May 2012): 1220001. http://dx.doi.org/10.1142/s0219887812200010.
Full textQin, Lizhen, and Botong Wang. "A family of compact complex and symplectic Calabi–Yau manifolds that are non-Kähler." Geometry & Topology 22, no. 4 (April 5, 2018): 2115–44. http://dx.doi.org/10.2140/gt.2018.22.2115.
Full textGRIBACHEVA, DOBRINKA. "A NATURAL CONNECTION ON A BASIC CLASS OF RIEMANNIAN PRODUCT MANIFOLDS." International Journal of Geometric Methods in Modern Physics 09, no. 07 (September 7, 2012): 1250057. http://dx.doi.org/10.1142/s0219887812500570.
Full textVu, Duc-Viet. "Relative non-pluripolar product of currents." Annals of Global Analysis and Geometry 60, no. 2 (May 26, 2021): 269–311. http://dx.doi.org/10.1007/s10455-021-09780-7.
Full textWinkelmann, Jörg. "On Manifolds with Trivial Logarithmic Tangent Bundle: The Non-Kähler Case." Transformation Groups 13, no. 1 (March 2008): 195–209. http://dx.doi.org/10.1007/s00031-008-9003-3.
Full textBISWAS, INDRANIL, MAHAN MJ, and HARISH SESHADRI. "3-MANIFOLD GROUPS, KÄHLER GROUPS AND COMPLEX SURFACES." Communications in Contemporary Mathematics 14, no. 06 (October 8, 2012): 1250038. http://dx.doi.org/10.1142/s0219199712500381.
Full textBiswas, Indranil, and Sorin Dumitrescu. "Branched Holomorphic Cartan Geometries and Calabi–Yau Manifolds." International Mathematics Research Notices 2019, no. 23 (February 7, 2018): 7428–58. http://dx.doi.org/10.1093/imrn/rny003.
Full textAgricola, Ilka, Giulia Dileo, and Leander Stecker. "Homogeneous non-degenerate 3-(α,δ)-Sasaki manifolds and submersions over quaternionic Kähler spaces." Annals of Global Analysis and Geometry 60, no. 1 (April 26, 2021): 111–41. http://dx.doi.org/10.1007/s10455-021-09762-9.
Full textCheng, Xiaoliang, and Yihong Hao. "On the non-existence of common submanifolds of Kähler manifolds and complex space forms." Annals of Global Analysis and Geometry 60, no. 1 (May 10, 2021): 167–80. http://dx.doi.org/10.1007/s10455-021-09776-3.
Full textChau, Albert, and Luen-Fai Tam. "Non-negatively curved Kähler manifolds with average quadratic curvature decay." Communications in Analysis and Geometry 15, no. 1 (2007): 121–46. http://dx.doi.org/10.4310/cag.2007.v15.n1.a4.
Full textYang, Bo, and Fangyang Zheng. "$U(n)$-invariant Kähler–Ricci flow with non-negative curvature." Communications in Analysis and Geometry 21, no. 2 (2013): 251–94. http://dx.doi.org/10.4310/cag.2013.v21.n2.a1.
Full textAbreu, Miguel, and Rosa Sena-Dias. "Scalar-flat Kähler metrics on non-compact symplectic toric 4-manifolds." Annals of Global Analysis and Geometry 41, no. 2 (July 3, 2011): 209–39. http://dx.doi.org/10.1007/s10455-011-9280-2.
Full textYur'ev, D. V. "Non-Euclidean geometry of mirrors and prequantization on the homogeneous Kähler manifoldM= Diff+(S1)/Rot(S1)." Russian Mathematical Surveys 43, no. 2 (April 30, 1988): 187–88. http://dx.doi.org/10.1070/rm1988v043n02abeh001724.
Full textNill, Benjamin, and Andreas Paffenholz. "Examples of Kähler–Einstein toric Fano manifolds associated to non-symmetric reflexive polytopes." Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 52, no. 2 (May 1, 2011): 297–304. http://dx.doi.org/10.1007/s13366-011-0041-y.
Full textBELLUCCI, STEFANO, SERGIO FERRARA, MURAT GÜNAYDIN, and ALESSIO MARRANI. "CHARGE ORBITS OF SYMMETRIC SPECIAL GEOMETRIES AND ATTRACTORS." International Journal of Modern Physics A 21, no. 25 (October 10, 2006): 5043–97. http://dx.doi.org/10.1142/s0217751x06034355.
Full textSAKAGUCHI, MAKOTO. "FOUR-DIMENSIONAL N=2 SUPERSTRING BACKGROUNDS AND THE REAL HEAVENS." International Journal of Modern Physics A 11, no. 07 (March 20, 1996): 1279–97. http://dx.doi.org/10.1142/s0217751x96000572.
Full text