Academic literature on the topic 'Non-Kähler geometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-Kähler geometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-Kähler geometry"
Dai, Song. "Lower order tensors in non-Kähler geometry and non-Kähler geometric flow." Annals of Global Analysis and Geometry 50, no. 4 (June 6, 2016): 395–418. http://dx.doi.org/10.1007/s10455-016-9518-0.
Full textBroder, Kyle. "The Schwarz lemma in Kähler and non-Kähler geometry." Asian Journal of Mathematics 27, no. 1 (2023): 121–34. http://dx.doi.org/10.4310/ajm.2023.v27.n1.a5.
Full textFino, Anna, and Adriano Tomassini. "Non-Kähler solvmanifolds with generalized Kähler structure." Journal of Symplectic Geometry 7, no. 2 (2009): 1–14. http://dx.doi.org/10.4310/jsg.2009.v7.n2.a1.
Full textVerbitsky, M. S., V. Vuletescu, and L. Ornea. "Classification of non-Kähler surfaces and locally conformally Kähler geometry." Russian Mathematical Surveys 76, no. 2 (April 1, 2021): 261–89. http://dx.doi.org/10.1070/rm9858.
Full textZheng, Fangyang. "Some recent progress in non-Kähler geometry." Science China Mathematics 62, no. 11 (May 22, 2019): 2423–34. http://dx.doi.org/10.1007/s11425-019-9528-1.
Full textAlessandrini, Lucia, and Giovanni Bassanelli. "Positive $$\partial \bar \partial - closed$$ currents and non-Kähler geometrycurrents and non-Kähler geometry." Journal of Geometric Analysis 2, no. 4 (July 1992): 291–316. http://dx.doi.org/10.1007/bf02934583.
Full textCortés, Vicente, and Liana David. "Twist, elementary deformation and K/K correspondence in generalized geometry." International Journal of Mathematics 31, no. 10 (September 2020): 2050078. http://dx.doi.org/10.1142/s0129167x20500780.
Full textDunajski, Maciej. "Null Kähler Geometry and Isomonodromic Deformations." Communications in Mathematical Physics 391, no. 1 (December 8, 2021): 77–105. http://dx.doi.org/10.1007/s00220-021-04270-0.
Full textYANG, BO. "A CHARACTERIZATION OF NONCOMPACT KOISO-TYPE SOLITONS." International Journal of Mathematics 23, no. 05 (May 2012): 1250054. http://dx.doi.org/10.1142/s0129167x12500541.
Full textYau, Shing-Tung. "Existence of canonical metrics in non-Kähler geometry." Notices of the International Congress of Chinese Mathematicians 9, no. 1 (2021): 1–10. http://dx.doi.org/10.4310/iccm.2021.v9.n1.a1.
Full textDissertations / Theses on the topic "Non-Kähler geometry"
Lee, Hwasung. "Strominger's system on non-Kähler hermitian manifolds." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:d3956c4f-c262-4bbf-8451-8dac35f6abef.
Full textProto, Yann. "Geometry of heterotic flux compactifications." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS125.
Full textThis thesis delves into recent developments in the study of flux compactifications of the heterotic string theory. We primarily focus on four-dimensional Minkowski compactifications with spacetime supersymmetry, whose underlying six-dimensional geometries are, in the presence of torsion, non-Kähler SU(3) structure manifolds. We develop several methods to analyze these compactifications from both supergravity and worldsheet perspectives. We investigate geometric flows in non-Kähler geometry that play a central role in the study of the Hull-Strominger equations, and elucidate their supersymmetry properties. We present a class of orbifold backgrounds that can be described using torsional linear sigma models with (0,2) worldsheet supersymmetry, and obtain new examples of heterotic flux backgrounds. Finally, we explore the implications of Narain T-duality for the moduli space of torsional heterotic vacua, and find evidence for topology change and Kähler/non-Kähler dualities
Göteman, Malin. "The Complex World of Superstrings : On Semichiral Sigma Models and N=(4,4) Supersymmetry." Doctoral thesis, Uppsala universitet, Teoretisk fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183407.
Full textBattisti, Laurent. "Variétés toriques à éventail infini et construction de nouvelles variétés complexes compactes : quotients de groupes de Lie complexes et discrets." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4714/document.
Full textIn this thesis we study certain classes of complex compact non-Kähler manifolds. We first look at the class of Kato surfaces. Given a minimal Kato surface S, D the divisor consisting of all rational curves of S and ϖ : Š ͢ S the universal covering of S, we show that Š \ϖ-1 (D) is a Stein manifold. LVMB manifolds are the second class of non-Kähler manifolds that we study here. These complex compact manifolds are obtained as quotient of an open subset U of Pn by a closed Lie subgroup G of (C*)n of dimension m. We reformulate this procedure by replacing U by the choice of a subfan of the fan of Pn and G by a suitable vector subspace of R^{n}. We then build new complex compact non Kähler manifolds by combining a method of Sankaran and the one giving LVMB manifolds. Sankaran considers an open subset U of a toric manifold whose quotient by a discrete group W is a compact manifold. Here, we endow some toric manifold Y with the action of a Lie subgroup G of (C^{*})^{n} such that the quotient X of Y by G is a manifold, and we take the quotient of an open subset of X by a discrete group W similar to Sankaran's one.Finally, we consider OT manifolds, another class of non-Kähler manifolds, and we show that their algebraic dimension is 0. These manifolds are obtained as quotient of an open subset of C^{m} by the semi-direct product of the lattice of integers of a finite field extension K over Q and a subgroup of units of K well-chosen
Knauf, Anke [Verfasser]. "Geometric transitions on non-Kähler manifolds / vorgelegt von Anke Knauf." 2006. http://d-nb.info/979527503/34.
Full textBooks on the topic "Non-Kähler geometry"
Dinew, Sławomir, Sebastien Picard, Andrei Teleman, and Alberto Verjovsky. Complex Non-Kähler Geometry. Edited by Daniele Angella, Leandro Arosio, and Eleonora Di Nezza. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2.
Full textAngella, Daniele. Cohomological Aspects in Complex Non-Kähler Geometry. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02441-7.
Full textAngella, Daniele. Cohomological Aspects in Complex Non-Kähler Geometry. Springer London, Limited, 2013.
Find full textAngella, Daniele, Sławomir Dinew, Sebastien Picard, Andrei Teleman, Alberto Verjovsky, Leandro Arosio, and Eleonora Di Nezza. Complex Non-Kähler Geometry: Cetraro, Italy 2018. Springer, 2019.
Find full textBook chapters on the topic "Non-Kähler geometry"
Dinew, Sławomir. "Lectures on Pluripotential Theory on Compact Hermitian Manifolds." In Complex Non-Kähler Geometry, 1–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_1.
Full textPicard, Sébastien. "Calabi–Yau Manifolds with Torsion and Geometric Flows." In Complex Non-Kähler Geometry, 57–120. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_2.
Full textTeleman, Andrei. "Non-Kählerian Compact Complex Surfaces." In Complex Non-Kähler Geometry, 121–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_3.
Full textVerjovsky, Alberto. "Intersection of Quadrics in ℂ n $$\mathbb {C}^n$$ , Moment-Angle Manifolds, Complex Manifolds and Convex Polytopes." In Complex Non-Kähler Geometry, 163–240. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_4.
Full textTian, Gang. "Kähler-Einstein metrics with non-positive scalar curvature." In Canonical Metrics in Kähler Geometry, 43–56. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8389-4_5.
Full textAngella, Daniele. "Preliminaries on (Almost-)Complex Manifolds." In Cohomological Aspects in Complex Non-Kähler Geometry, 1–63. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_1.
Full textAngella, Daniele. "Cohomology of Complex Manifolds." In Cohomological Aspects in Complex Non-Kähler Geometry, 65–94. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_2.
Full textAngella, Daniele. "Cohomology of Nilmanifolds." In Cohomological Aspects in Complex Non-Kähler Geometry, 95–150. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_3.
Full textAngella, Daniele. "Cohomology of Almost-Complex Manifolds." In Cohomological Aspects in Complex Non-Kähler Geometry, 151–232. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_4.
Full textLiu, Xu. "Compact Smooth but Non-complex Complements of Complete Kähler Manifolds." In Complex Analysis and Geometry, 235–39. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55744-9_17.
Full text