To see the other types of publications on this topic, follow the link: Non insulin.

Journal articles on the topic 'Non insulin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Non insulin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pandya, Maitrey, and Miral Damani. "NEUROPHYSIOLOGICAL CHANGES IN PERSON WITH INSULIN DEPENDENT AND NON INSULIN DEPENDENT DIABETES MELLITUS." International Journal of Physiotherapy and Research 7, no. 2 (March 11, 2019): 3011–15. http://dx.doi.org/10.16965/ijpr.2019.102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Taylor, R. "Insulin for the non-insulin dependent?" BMJ 296, no. 6628 (April 9, 1988): 1015–16. http://dx.doi.org/10.1136/bmj.296.6628.1015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MacPherson, J. N. "Insulin for the non-insulin dependent?" BMJ 296, no. 6633 (May 14, 1988): 1401. http://dx.doi.org/10.1136/bmj.296.6633.1401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holman, R. R. "Insulin for the non-insulin dependent?" BMJ 296, no. 6634 (May 21, 1988): 1469–70. http://dx.doi.org/10.1136/bmj.296.6634.1469-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cradock, Sue. "Non-insulin dependent." Primary Health Care 3, no. 5 (May 1993): 16–19. http://dx.doi.org/10.7748/phc.3.5.16.s12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Scott, R. S., D. R. Mason, F. J. M. Iris, and J. R. Bremer. "Insulin deficiency in non-insulin-dependent diabetics." Diabetes Research and Clinical Practice 2, no. 6 (January 1986): 359–64. http://dx.doi.org/10.1016/s0168-8227(86)80073-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Temple, RosemaryC, StephenD Luzio, AnneroseE Schneider, ChristineA Carrington, DavidR Owens, WendyJ Sobey, and C. Nicholas Hales. "INSULIN DEFICIENCY IN NON-INSULIN-DEPENDENT DIABETES." Lancet 333, no. 8633 (February 1989): 293–95. http://dx.doi.org/10.1016/s0140-6736(89)91306-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de Neeling, J. N. "Insulin resistance and non-insulin-dependent diabetes." JAMA: The Journal of the American Medical Association 274, no. 18 (November 8, 1995): 1426b—1426. http://dx.doi.org/10.1001/jama.274.18.1426b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

de Neeling, J. Nico D. "Insulin Resistance and Non—insulin-dependent Diabetes." JAMA: The Journal of the American Medical Association 274, no. 18 (November 8, 1995): 1426. http://dx.doi.org/10.1001/jama.1995.03530180020016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Garrow, J. S. "Points: Insulin for the non-insulin dependent?" BMJ 296, no. 6635 (May 28, 1988): 1540. http://dx.doi.org/10.1136/bmj.296.6635.1540-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Pandya, Maitrey, and Miral Damani. "NEUROPHYSIOLOGICAL CHANGES IN CONTEXT TO DURATION OF EXPOSURE IN INSULIN DEPENDENT AND NON INSULIN DEPENDENT DIABETES MELLITUS." International Journal of Physiotherapy and Research 5, no. 2 (April 11, 2017): 1902–5. http://dx.doi.org/10.16965/ijpr.2016.178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mera, Carlos Andree Cevallos. "Therapeutic Adherence in Patients with Diabetes Mellitus Non-insulin Dependent." International Journal of Psychosocial Rehabilitation 24, no. 5 (March 31, 2020): 1571–78. http://dx.doi.org/10.37200/ijpr/v24i5/pr201828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Cerasi, Erol. "Insulin resistance, insulin deficiency, and non-insulin-dependent diabetes mellitus." Diabetes Research and Clinical Practice 14 (January 1991): S37—S45. http://dx.doi.org/10.1016/0168-8227(91)90006-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Grunstein, H. S., G. A. Smythe, L. H. Storlien, Per Westermark, and Erik Wilander. "NON-INSULIN-DEPENDENT DIABETES." Lancet 326, no. 8446 (July 1985): 104–5. http://dx.doi.org/10.1016/s0140-6736(85)90212-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Olefsky, Jerrold M. "Insulin resistance in non-insulin-dependent diabetes mellitus." Current Opinion in Endocrinology and Diabetes 2, no. 4 (August 1995): 290–99. http://dx.doi.org/10.1097/00060793-199508000-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gerich, John. "Insulin Resistance and Non—insulin-dependent Diabetes-Reply." JAMA: The Journal of the American Medical Association 274, no. 18 (November 8, 1995): 1426. http://dx.doi.org/10.1001/jama.1995.03530180020017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Alzaid, A. A. "Insulin resistance in non-insulin-dependent diabetes mellitus." Acta Diabetologica 33, no. 2 (June 1996): 87–99. http://dx.doi.org/10.1007/bf00569416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Alzaid, A. A. "Insulin resistance in non-insulin-dependent diabetes mellitus." Acta Diabetologica 33, no. 2 (July 1, 1996): 87–99. http://dx.doi.org/10.1007/s005920050013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Arnold, Lindsay M., Darcie L. Keller, and Toyin S. Tofade. "Hyperglycemia Management in Non-critically Ill Hospitalized Patients." Journal of Pharmacy Practice 22, no. 5 (March 2, 2009): 467–77. http://dx.doi.org/10.1177/0897190008330198.

Full text
Abstract:
There is increasing evidence demonstrating negative consequences and poor clinical outcomes associated with untreated hyperglycemia in hospitalized patients. Data in specific patient populations, primarily critically ill patients, demonstrate improved patient outcomes with tight glycemic control. To date, no clear evidence exists to determine optimal glycemic targets in non-critically ill patients; however, experts agree that better glycemic control in hospitalized patients is warranted. Glycemic control is complicated by numerous factors in hospitalized patients including increased circulating stress hormones, changing nutritional status, and administration of medication therapies that contribute to hyperglycemia. In addition, fear of hypoglycemia among health care providers, a commonly cited barrier, contributes to the failure to adopt more intensive insulin regimens. Current practice trends have proven ineffective and major changes are needed. Some of those trends include the use of sliding scale insulin, continuation of oral agents or combination insulins upon admission, and provider reluctance to initiate insulin in patients not receiving insulin prior to admission. With proper education, safe and effective use of insulin can be used during hospitalization to improve glycemic control. The following article reviews the benefits of glycemic control, identifies barriers to achieving glycemic control, and describes strategies for health care providers and institutions to realize glycemic control in medically ill hospitalized patients.
APA, Harvard, Vancouver, ISO, and other styles
20

Emoto, Masanori, Yoshiki Nishizawa, Kiyoshi Maekawa, Takahiko Kawagishi, Kyoko Kogawa, Yoshikazu Hiura, Katsuhito Mori, et al. "Insulin resistance in non-obese, non—insulin-dependent diabetic patients with diabetic nephropathy." Metabolism 46, no. 9 (September 1997): 1013–18. http://dx.doi.org/10.1016/s0026-0495(97)90271-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kim, Jongoh, Se Min Kim, Ha Cam Thuy Nguyen, and Maria Jose Redondo. "Therapeutics in pediatric diabetes: Insulin and non-insulin approaches." Pharmacological Research 65, no. 1 (January 2012): 1–4. http://dx.doi.org/10.1016/j.phrs.2011.08.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Heine, Robert J. "12 Insulin treatment of non-insulin-dependent diabetes mellitus." Baillière's Clinical Endocrinology and Metabolism 2, no. 2 (May 1988): 477–92. http://dx.doi.org/10.1016/s0950-351x(88)80044-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Karam, J. "Reversible Insulin Resistance in Non-Insulin-Dependent Diabetes Mellitus." Hormone and Metabolic Research 28, no. 09 (September 1996): 440–44. http://dx.doi.org/10.1055/s-2007-979834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

TEMPLE, ROSEMARY C., PENELOPE M. S. CLARK, DINESH K. NAGI, ANNEROSE E. SCHNEIDER, JOHN S. YUDKIN, and C. NICHOLAS HALES. "RADIOIMMUNOASSAY MAY OVERESTIMATE INSULIN IN NON-INSULIN-DEPENDENT DIABETICS." Clinical Endocrinology 32, no. 6 (June 1990): 689–93. http://dx.doi.org/10.1111/j.1365-2265.1990.tb00915.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

WOLFFENBUTTEL, B. H. R., and T. W. VAN HAEFTEN. "Non-insulin dependent diabetes mellitus: defects in insulin secretion." European Journal of Clinical Investigation 23, no. 2 (February 1993): 69–79. http://dx.doi.org/10.1111/j.1365-2362.1993.tb00743.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Clements, Rex S., David S. H. Bell, Abdel Benbarka, and Stuart A. Capper. "Rapid insulin initiation in non-insulin-dependent diabetes mellitus." American Journal of Medicine 82, no. 3 (March 1987): 415–20. http://dx.doi.org/10.1016/0002-9343(87)90440-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Jeanrenaud, B., and S. Halimi. "Insulin resistance in non-insulin-dependent diabetes mellitus (NIDDM)." Diabetes Research and Clinical Practice 4 (January 1988): 6–7. http://dx.doi.org/10.1016/0168-8227(88)90004-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Knowler, W. C., K. M. V. Narayan, R. L. Hanson, R. G. Nelson, P. H. Bennett, J. Tuomilehto, B. Schersten, and D. J. Pettitt. "Preventing Non-Insulin-Dependent Diabetes." Diabetes 44, no. 5 (May 1, 1995): 483–88. http://dx.doi.org/10.2337/diab.44.5.483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Morishita, Mariko. "Non-invasive insulin delivery system." Drug Delivery System 24, no. 4 (2009): 402–7. http://dx.doi.org/10.2745/dds.24.402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Metabolism and Diabetes of South Africa, The Society for Endocrinology. "Glucose Control: non-insulin therapies*." South African Family Practice 60, no. 1 (March 17, 2018): 4–14. http://dx.doi.org/10.4102/safp.v60i1.4821.

Full text
Abstract:
This chapter summarises information for each of the non-insulin drug classes that are used for blood glucose control. Each summary is accompanied by a table of recommendations to guide the clinical use of these medications. For the sake of completeness, and for those that are interested, we have included a more detailed review of each drug as an appendix to each summary. These can be found in the Appendix section of the guidelines. The treatment recommendations for each drug have been incorporated into the treatment algorithm in Chapter 11. The following abbreviations are used in this chapter: DPP-4: dipeptidyl peptidase-4 GLP-1: glucagon-like peptide-1 SGLT2- sodium-glucose linked transporter-2
APA, Harvard, Vancouver, ISO, and other styles
31

Angueira, Eugenio. "Non-Insulin Treatments for Diabetes." American Journal of Therapeutics 20, no. 4 (2013): 377–84. http://dx.doi.org/10.1097/mjt.0b013e318235f2cb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Flick, Mary, and Lorna Schumann. "Non?Insulin-Dependent Diabetes Mellitus." Journal of the American Academy of Nurse Practitioners 9, no. 7 (July 1997): 337–44. http://dx.doi.org/10.1111/j.1745-7599.1997.tb01201.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hales, C. N. "Non-insulin-dependent diabetes mellitus." British Medical Bulletin 53, no. 1 (January 1, 1997): 109–22. http://dx.doi.org/10.1093/oxfordjournals.bmb.a011594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Knowler, W. C., K. M. Narayan, R. L. Hanson, R. G. Nelson, P. H. Bennett, J. Tuomilehto, B. Schersten, and D. J. Pettitt. "Preventing non-insulin-dependent diabetes." Diabetes 44, no. 5 (May 1, 1995): 483–88. http://dx.doi.org/10.2337/diabetes.44.5.483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dunning, Beth Elaine. "New non-sulfonylurea insulin secretagogues." Expert Opinion on Investigational Drugs 6, no. 8 (August 1997): 1041–48. http://dx.doi.org/10.1517/13543784.6.8.1041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Nelson, Roger L. "Non-insulin-dependent diabetes mellitus." Postgraduate Medicine 81, no. 6 (May 1987): 177–86. http://dx.doi.org/10.1080/00325481.1987.11699825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Thorsteinsson, B. "Non-linearity of insulin kinetics." Diabetologia 29, no. 12 (December 1986): 898. http://dx.doi.org/10.1007/bf00870148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Laurenti, Marcello C., Chiara Dalla Man, Ron T. Varghese, James C. Andrews, John G. Jones, Cristina Barosa, Robert A. Rizza, et al. "Insulin Pulse Characteristics and Insulin Action in Non-diabetic Humans." Journal of Clinical Endocrinology & Metabolism 106, no. 6 (February 19, 2021): 1702–9. http://dx.doi.org/10.1210/clinem/dgab100.

Full text
Abstract:
Abstract Objective Pulsatile insulin secretion is impaired in diseases such as type 2 diabetes that are characterized by insulin resistance. This has led to the suggestion that changes in insulin pulsatility directly impair insulin signaling. We sought to examine the effects of pulse characteristics on insulin action in humans, hypothesizing that a decrease in pulse amplitude or frequency is associated with impaired hepatic insulin action. Methods We studied 29 nondiabetic subjects on two occasions. On 1 occasion, hepatic and peripheral insulin action was measured using a euglycemic clamp. The deuterated water method was used to estimate the contribution of gluconeogenesis to endogenous glucose production. On a separate study day, we utilized nonparametric stochastic deconvolution of frequently sampled peripheral C-peptide concentrations during fasting to reconstruct portal insulin secretion. In addition to measuring basal and pulsatile insulin secretion, we used approximate entropy to measure orderliness and Fourier transform to measure the average, and the dispersion of, insulin pulse frequencies. Results In univariate analysis, basal insulin secretion (R2 = 0.16) and insulin pulse amplitude (R2 = 0.09) correlated weakly with insulin-induced suppression of gluconeogenesis. However, after adjustment for age, sex, and weight, these associations were no longer significant. The other pulse characteristics also did not correlate with the ability of insulin to suppress endogenous glucose production (and gluconeogenesis) or to stimulate glucose disappearance. Conclusions Overall, our data demonstrate that insulin pulse characteristics, considered independently of other factors, do not correlate with measures of hepatic and peripheral insulin sensitivity in nondiabetic humans.
APA, Harvard, Vancouver, ISO, and other styles
39

Joffe, Bi, I. Segal, Vr Panz, Jr Wing, Fj Raal, and Hc Seftel. "Insulin resistance or insulin deficiency as precursor of non-insulin-dependent diabetes mellitus." Lancet 344, no. 8938 (December 1994): 1705. http://dx.doi.org/10.1016/s0140-6736(94)90488-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Saudek, Christopher D. "Implantable Insulin Pump vs Multiple-Dose Insulin for Non—Insulin-Dependent Diabetes Mellitus." JAMA 276, no. 16 (October 23, 1996): 1322. http://dx.doi.org/10.1001/jama.1996.03540160044031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

ROSE, MICHAEL T., YOSHIAKI OBARA, FUMIAKI ITOH, HARUO HASHIMOTO, and YUJI TAKAHASHI. "Non-insulin- and insulin-mediated glucose uptake in dairy cows." Journal of Dairy Research 64, no. 3 (August 1997): 341–53. http://dx.doi.org/10.1017/s0022029997002215.

Full text
Abstract:
Four mid-lactation Holstein dairy cows (mean milk yield on day of experiments 26·1 kg/d) were used in a series of experiments to establish the contribution of non-insulin-mediated glucose uptake to total glucose uptake at basal insulin concentrations. A secondary objective was to determine whether somatostatin affects the action of infused insulin. In part I of the experiment a primed continuous infusion of [6,6-2H]glucose (45·2 μg/kg per min) was begun at time 0 and continued for 5 h. After 3 h of [6,6-2H]glucose infusion (basal period) a primed continuous infusion of insulin (0·001 i.u./kg per min) was administered for 2 h. Coincident with the insulin infusion, normal glucose was also infused in order to maintain the plasma glucose concentration at euglycaemia. Part II of the experiment was the same as part I except that somatostatin was infused for 2 h (0·333 μg/kg per min) instead of insulin. In part III of the experiment both insulin and somatostatin were infused for the final 2 h. Plasma insulin levels were increased by insulin infusion (to 0·1476 and 0·1290 i.u./l for parts I and III respectively) and were reduced by somatostatin infusion in part II (to 0·006 i.u./l) relative to the basal periods (mean 0·021 i.u./l). Glucose uptake during somatostatin infusion (2·50 mg/kg per min; part II) was 92·0% of that observed in the respective basal period (2·72 mg/kg per min). Circulating insulin levels were much lower than the dose of insulin that causes a half maximal effect on glucose uptake (0·06–0·10 i.u./l for ruminants); consequently insulin-mediated glucose uptake was probably absent in part II. Secondly, glucose uptake following insulin only infusion (4·05 mg/kg per min) was significantly lower than that observed when insulin plus somatostatin was infused (4·69 mg/kg per min), indicating that somatostatin either directly or indirectly enhanced the action of insulin on glucose uptake.
APA, Harvard, Vancouver, ISO, and other styles
42

Coculescu, M., D. Niculescu, R. Lichiardopol, and M. Purice. "Insulin Resistance and Insulin Secretion in Non-diabetic Acromegalic Patients." Experimental and Clinical Endocrinology & Diabetes 115, no. 05 (May 21, 2007): 308–16. http://dx.doi.org/10.1055/s-2007-961797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Olansky, L., C. Welling, S. Giddings, S. Adler, R. Bourey, G. Dowse, S. Serjeantson, P. Zimmet, and M. A. Permutt. "A variant insulin promoter in non-insulin-dependent diabetes mellitus." Journal of Clinical Investigation 89, no. 5 (May 1, 1992): 1596–602. http://dx.doi.org/10.1172/jci115754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

LAAKSO, M., H. SARLUND, and L. MYKKÄNEN. "Essential hypertension and insulin resistance in non-insulin-dependent diabetes." European Journal of Clinical Investigation 19, no. 6 (December 1989): 518–26. http://dx.doi.org/10.1111/j.1365-2362.1989.tb00269.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Laakso, M., M. Malkki, P. Kekäläinen, J. Kuusisto, and S. S. Deeb. "Insulin receptor substrate-1 variants in non-insulin-dependent diabetes." Journal of Clinical Investigation 94, no. 3 (September 1, 1994): 1141–46. http://dx.doi.org/10.1172/jci117429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Morgan, R., A. Bishop, DR Owens, and A. Rees. "Insulin Receptor Gene Variants in Non-Insulin Dependent Diabetes Mellitus." Clinical Science 74, s18 (January 1, 1988): 41P. http://dx.doi.org/10.1042/cs074041pb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Udvardy, M., G. Pfliegler, and K. Rak. "Platelet insulin receptor determination in non-insulin dependent diabetes mellitus." Experientia 41, no. 3 (March 1985): 422–23. http://dx.doi.org/10.1007/bf02004539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sawa, T., S. Ohgaku, H. Morioka, and S. Yano. "Molecular cloning and DNA sequence analysis of preproinsulin genes in the NON mouse, an animal model of human non-obese, non-insulin-dependent diabetes mellitus." Journal of Molecular Endocrinology 5, no. 1 (August 1990): 61–67. http://dx.doi.org/10.1677/jme.0.0050061.

Full text
Abstract:
ABSTRACT Two insulin genes of the NON mouse, an animal model of human non-obese, non-insulin-dependent diabetes mellitus, were isolated and characterized to examine the hypothesis that these genes are structurally different from those of normal mice. The NON mouse was found to have two non-allelic insulin genes, as does the normal mouse, and no structural differences were found between the normal and NON mouse in the nucleotide sequence of the insulin gene, including that of the 5′-transcriptional regulatory region, and in the deduced amino acid sequence. There was, however, an additional 113 bp sequence and seven point mutations in a further 5′-flanking region, and three point mutations in the 3′-flanking region of the insulin II gene. We conclude that reduced expression of insulin genes in the NON mouse is not due to the structural change in the known transcriptional regulatory region, although the effect on insulin II gene expression of an additional sequence upstream of the 5′-flanking region, as the negative regulatory factor, remains to be elucidated.
APA, Harvard, Vancouver, ISO, and other styles
49

Brody, J. I. "Non-insulin dependent diabetes mellitus and non-Hodgkin's lymphoma." BMJ 310, no. 6985 (April 15, 1995): 1009. http://dx.doi.org/10.1136/bmj.310.6985.1009b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ferrannini, Ele. "Insulin Resistance versus Insulin Deficiency in Non-Insulin-Dependent Diabetes Mellitus: Problems and Prospects." Endocrine Reviews 19, no. 4 (August 1, 1998): 477–90. http://dx.doi.org/10.1210/edrv.19.4.0336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography