Academic literature on the topic 'Non-Hermitian Hamiltonian'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-Hermitian Hamiltonian.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-Hermitian Hamiltonian"
Yeşiltaş, Özlem. "Non-Hermitian Dirac Hamiltonian in Three-Dimensional Gravity and Pseudosupersymmetry." Advances in High Energy Physics 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/484151.
Full textSamsonov, Boris F. "Hermitian Hamiltonian equivalent to a given non-Hermitian one: manifestation of spectral singularity." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1989 (April 28, 2013): 20120044. http://dx.doi.org/10.1098/rsta.2012.0044.
Full textGrimaudo, Roberto, Antonino Messina, Alessandro Sergi, Nikolay V. Vitanov, and Sergey N. Filippov. "Two-Qubit Entanglement Generation through Non-Hermitian Hamiltonians Induced by Repeated Measurements on an Ancilla." Entropy 22, no. 10 (October 20, 2020): 1184. http://dx.doi.org/10.3390/e22101184.
Full textSharma, Preet. "𝒫𝒯-Symmetric Quantum Mechanics Basics & Zeeman Effect." Reports in Advances of Physical Sciences 04, no. 03 (September 2020): 2050006. http://dx.doi.org/10.1142/s2424942420500061.
Full textHallford, Randal, and Preet Sharma. "Non-Hermitian Hamiltonian Treatment of Stark Effect in Quantum Mechanics." Emerging Science Journal 4, no. 6 (December 1, 2020): 427–35. http://dx.doi.org/10.28991/esj-2020-01242.
Full textBERMAN, GENNADY P., and ALEXANDER I. NESTEROV. "NON-HERMITIAN ADIABATIC QUANTUM OPTIMIZATION." International Journal of Quantum Information 07, no. 08 (December 2009): 1469–78. http://dx.doi.org/10.1142/s0219749909005961.
Full textMilitello, Benedetto, and Anna Napoli. "Evanescent Wave Approximation for Non-Hermitian Hamiltonians." Entropy 22, no. 6 (June 4, 2020): 624. http://dx.doi.org/10.3390/e22060624.
Full textSINHA, A., and P. ROY. "DARBOUX TRANSFORMATION FOR THE ONE-DIMENSIONAL STATIONARY DIRAC EQUATION WITH NON-HERMITIAN INTERACTION." International Journal of Modern Physics A 21, no. 28n29 (November 20, 2006): 5807–22. http://dx.doi.org/10.1142/s0217751x0603312x.
Full textMannheim, Philip D. "PT symmetry as a necessary and sufficient condition for unitary time evolution." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1989 (April 28, 2013): 20120060. http://dx.doi.org/10.1098/rsta.2012.0060.
Full textChen Zeng-Jun and Ning Xi-Jing. "Physical meaning of non-Hermitian Hamiltonian." Acta Physica Sinica 52, no. 11 (2003): 2683. http://dx.doi.org/10.7498/aps.52.2683.
Full textDissertations / Theses on the topic "Non-Hermitian Hamiltonian"
Musumbu, Dibwe Pierrot. "The metric for non-Hermitian Hamiltonians : a case study." Thesis, Stellenbosch : Stellenbosch University, 2006. http://hdl.handle.net/10019.1/17403.
Full textENGLISH ABSTRACT: We are studying a possible implementation of an appropriate framework for a proper non- Hermitian quantum theory. We present the case where for a non-Hermitian Hamiltonian with real eigenvalues, we define a new inner product on the Hilbert space with respect to which the non-Hermitian Hamiltonian is Quasi-Hermitian. The Quasi-hermiticity of the Hamiltonian introduces the bi-orthogonality between the left-hand eigenstates and the right-hand eigenstates, in which case the metric becomes a basis transformation. We use the non-Hermitian quadratic Hamiltonian to show that such a metric is not unique but can be uniquely defined by requiring to hermitize all elements of one of the irreducible sets defined on the set of all observables. We compare the constructed metric with specific known examples in the literature in which cases a unique choice is made.
AFRIKAANSE OPSOMMING: Ons ondersoek die implementering van n gepaste raamwerk virn nie-Hermitiese kwantumteorie. Ons beskoun nie-Hermitiese Hamilton-operator met reele eiewaardes en definieer in gepaste binneproduk ten opsigtewaarvan die operator kwasi-Hermitiese is. Die kwasi- Hermities aard van die Hamilton operator lei dan tot n stel bi-ortogonale toestande. Ons konstrueer n basistransformasie wat die linker en regter eietoestande van hierdie stel koppel. Hierdie transformasie word dan gebruik omn nuwe binneproduk op die Hilbert-ruimte te definieer. Die oorspronklike nie-HermitieseHamilton-operator is danHermitiesmet betrekking tot hierdie nuwe binneproduk. Ons gebruik die nie-Hermitiese kwadratieseHamilton-operator omte toon dat hierdie metriek nie uniek is nie, maar wel uniek bepaal kan word deur verder te vereis dat dit al die elemente van n onherleibare versameling operatoreHermitiseer. Ons vergelyk hierdie konstruksiemet die bekende voorbeelde in die literatuur en toon dat diemetriek in beide gevalle uniek bepaal kan word.
Assis, Paulo. "Non-Hermitian Hamiltonians in field theory." Thesis, City University London, 2009. http://openaccess.city.ac.uk/2118/.
Full textWessels, Gert Jermia Cornelus. "A numerical and analytical investigation into non-Hermitian Hamiltonians." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2894.
Full textIn this thesis we aim to show that the Schr odinger equation, which is a boundary eigenvalue problem, can have a discrete and real energy spectrum (eigenvalues) even when the Hamiltonian is non-Hermitian. After a brief introduction into non-Hermiticity, we will focus on solving the Schr odinger equation with a special class of non-Hermitian Hamiltonians, namely PT - symmetric Hamiltonians. PT -symmetric Hamiltonians have been discussed by various authors [1, 2, 3, 4, 5] with some of them focusing speci cally on obtaining the real and discrete energy spectrum. Various methods for solving this problematic Schr odinger equation will be considered. After starting with perturbation theory, we will move on to numerical methods. Three di erent categories of methods will be discussed. First there is the shooting method based on a Runge-Kutta solver. Next, we investigate various implementations of the spectral method. Finally, we will look at the Riccati-Pad e method, which is a numerical implemented analytical method. PT -symmetric potentials need to be solved along a contour in the complex plane. We will propose modi cations to the numerical methods to handle this. After solving the widely documented PT -symmetric Hamiltonian H = p2 (ix)N with these methods, we give a discussion and comparison of the obtained results. Finally, we solve another PT -symmetric potential, illustrating the use of paths in the complex plane to obtain a real and discrete spectrum and their in uence on the results.
Wijewardena, Udagamge. "Iterative method of solving schrodinger equation for non-Hermitian, pt-symmetric Hamiltonians." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2016. http://digitalcommons.auctr.edu/dissertations/3194.
Full textSuen, Gwo-Hong. "The formulation of non-Hermitian PT-symmetric Hamiltonians and pseudo-Hermiticity." 2007. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2607200711424900.
Full textBooks on the topic "Non-Hermitian Hamiltonian"
Bagarello, Fabio, Roberto Passante, and Camillo Trapani, eds. Non-Hermitian Hamiltonians in Quantum Physics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31356-6.
Full textBagarello, Fabio, Roberto Passante, and Camillo Trapani. Non-Hermitian Hamiltonians in Quantum Physics: Selected Contributions from the 15th International Conference on Non-Hermitian Hamiltonians in Quantum ... May 2015. Springer, 2018.
Find full textBagarello, Fabio, Roberto Passante, and Camillo Trapani. Non-Hermitian Hamiltonians in Quantum Physics: Selected Contributions from the 15th International Conference on Non-Hermitian Hamiltonians in Quantum ... May 2015. Springer, 2016.
Find full textBagarello, Fabio, Roberto Passante, and Camillo Trapani. Non-Hermitian Hamiltonians in Quantum Physics: Selected Contributions from the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, Palermo, Italy, 18-23 May 2015. Springer London, Limited, 2016.
Find full textBook chapters on the topic "Non-Hermitian Hamiltonian"
Faisal, Farhad H. M. "Non-Hermitian Hamiltonian Theory of Multiphoton Transitions." In Theory of Multiphoton Processes, 287–322. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-1977-9_11.
Full textErgun, Ebru. "On the Eigenvalues of a Non-Hermitian Hamiltonian." In Dynamical Systems and Methods, 245–54. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0454-5_13.
Full textCambiaggio, M. C., and J. Dukelsky. "Variational Approximation to the Non-Hermitian Dyson Boson Hamiltonian." In Condensed Matter Theories, 93–100. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0971-0_8.
Full textBagarello, Fabio, Francesco Gargano, Margherita Lattuca, Roberto Passante, Lucia Rizzuto, and Salvatore Spagnolo. "Exceptional Points in a Non-Hermitian Extension of the Jaynes-Cummings Hamiltonian." In Springer Proceedings in Physics, 83–95. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31356-6_6.
Full textAoyama, Hideaki, Anatoli Konechny, V. Lemes, N. Maggiore, M. Sarandy, S. Sorella, Steven Duplij, et al. "Non-Hermitian Hamiltonians." In Concise Encyclopedia of Supersymmetry, 267. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_350.
Full textBender, Carl M., and Dorje C. Brody. "Optimal Time Evolution for Hermitian and Non-Hermitian Hamiltonians." In Time in Quantum Mechanics II, 341–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03174-8_12.
Full textMiyaoka, Reiko. "Hamiltonian Non-displaceability of the Gauss Images of Isoprametric Hypersurfaces (A Survey)." In Hermitian–Grassmannian Submanifolds, 83–99. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5556-0_8.
Full textZnojil, Miloslav. "On Some Aspects of Unitary Evolution Generated by Non-Hermitian Hamiltonians." In Integrability, Supersymmetry and Coherent States, 411–26. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20087-9_20.
Full textZelaya, Kevin, Sara Cruz y Cruz, and Oscar Rosas-Ortiz. "On the Construction of Non-Hermitian Hamiltonians with All-Real Spectra Through Supersymmetric Algorithms." In Trends in Mathematics, 283–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53305-2_18.
Full textMOGHADDAM, AMIR, JON LINKS, and YAO-ZHONG ZHANG. "EXACTLY SOLVABLE, NON-HERMITIAN BCS HAMILTONIAN." In Symmetries and Groups in Contemporary Physics, 627–30. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814518550_0091.
Full textConference papers on the topic "Non-Hermitian Hamiltonian"
Celardo, G. L., A. Biella, G. G. Giusteri, F. Mattiotti, Y. Zhang, and L. Kaplan. "Superradiance, disorder, and the non-Hermitian Hamiltonian in open quantum systems." In LIGHT AND ITS INTERACTIONS WITH MATTER. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4899219.
Full textNasari, H., G. Lopez-Galmiche, H. E. Lopez-Aviles, A. Schumer, A. U. Hassan, Q. Zhong, S. Rotter, P. L. LiKamWa, D. N. Christodoulides, and M. Khajavikhan. "Dynamics of Chiral State Transfer in the Vicinity of a Non-Hermitian Singularity." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fm5b.7.
Full textZloshchastiev, Konstantin G. "Non-Hermitian Hamiltonian approach for electromagnetic wave propagation and dissipation in dielectric media." In 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW). IEEE, 2016. http://dx.doi.org/10.1109/msmw.2016.7538192.
Full textChen, Zihao, Yao Zhou, and Jung-Tsung Shen. "Breakdown of Non-Hermitian Hamiltonian for Correlated Multi-photon Transport Due to Reservoir-induced Correlation Changes." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cleo_qels.2019.ftu3b.6.
Full textKocharovsky, V. V., Vl V. Kocharovsky, S. A. Litvak, I. A. Shereshevsky, and E. A. Derishev. "Nonunitary evolution of the dressed states coupled with a continuum: possible optical verification of the true non-Hermitian Hamiltonian." In International Conference on Coherent and Nonlinear Optics, edited by A. L. Andreev, Olga A. Kocharovskaya, and Paul Mandel. SPIE, 1996. http://dx.doi.org/10.1117/12.239484.
Full textBENDER, CARL M. "NON-HERMITIAN HAMILTONIANS HAVING REAL SPECTRA." In Proceedings of the Sixth Workshop. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778352_0025.
Full textHO, CHOON-LIN. "PREPOTENTIAL APPROACH TO EXACT AND QUASI-EXACT SOLVABILITIES OF HERMITIAN AND NON-HERMITIAN HAMILTONIANS." In Statistical Physics, High Energy, Condensed Matter and Mathematical Physics - The Conference in Honor of C. N. Yang'S 85th Birthday. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812794185_0055.
Full textCerjan, Alexander, Meng Xiao, Luqi Yuan, and Shanhui Fan. "Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_qels.2018.fm2q.4.
Full textKleefeld, Frieder. "Consistent relativistic Quantum Theory for systems/particles described by non-Hermitian Hamiltonians and Lagrangians." In HADRON PHYSICS: Effective Theories of Low Energy QCD Second International Workshop on Hadron Physics. AIP, 2003. http://dx.doi.org/10.1063/1.1570583.
Full text