Academic literature on the topic 'Non-Euclidean spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-Euclidean spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-Euclidean spaces"
Lally, Nick, and Luke Bergmann. "Mapping dynamic, non-Euclidean spaces." Abstracts of the ICA 1 (July 15, 2019): 1–2. http://dx.doi.org/10.5194/ica-abs-1-204-2019.
Full textCourrieu, Pierre. "Function approximation on non-Euclidean spaces." Neural Networks 18, no. 1 (January 2005): 91–102. http://dx.doi.org/10.1016/j.neunet.2004.09.003.
Full textNovello, Tiago, Vincius da Silva, and Luiz Velho. "Global illumination of non-Euclidean spaces." Computers & Graphics 93 (December 2020): 61–70. http://dx.doi.org/10.1016/j.cag.2020.09.014.
Full textUrban, Philipp, Mitchell R. Rosen, Roy S. Berns, and Dierk Schleicher. "Embedding non-Euclidean color spaces into Euclidean color spaces with minimal isometric disagreement." Journal of the Optical Society of America A 24, no. 6 (May 9, 2007): 1516. http://dx.doi.org/10.1364/josaa.24.001516.
Full textBORELL, STEFAN, and FRANK KUTZSCHEBAUCH. "NON-EQUIVALENT EMBEDDINGS INTO COMPLEX EUCLIDEAN SPACES." International Journal of Mathematics 17, no. 09 (October 2006): 1033–46. http://dx.doi.org/10.1142/s0129167x06003795.
Full textBorisov, A. V., and I. S. Mamaev. "Rigid body dynamics in non-Euclidean spaces." Russian Journal of Mathematical Physics 23, no. 4 (October 2016): 431–54. http://dx.doi.org/10.1134/s1061920816040026.
Full textCapecchi, Danilo, and Giuseppe Ruta. "Beltrami's continuum mechanics in non-Euclidean spaces." PAMM 15, no. 1 (October 2015): 703–4. http://dx.doi.org/10.1002/pamm.201510341.
Full textMidler, Jean-Claude. "Non-Euclidean Geographic Spaces: Mapping Functional Distances." Geographical Analysis 14, no. 3 (September 3, 2010): 189–203. http://dx.doi.org/10.1111/j.1538-4632.1982.tb00068.x.
Full textDörfel, B.-D. "Non-commutative Euclidean structures in compact spaces." Journal of Physics A: Mathematical and General 34, no. 12 (March 19, 2001): 2583–94. http://dx.doi.org/10.1088/0305-4470/34/12/306.
Full textSchwarz, Binyamin, and Abraham Zaks. "Non-Euclidean motions in projective matrix spaces." Linear Algebra and its Applications 137-138 (August 1990): 351–61. http://dx.doi.org/10.1016/0024-3795(90)90134-x.
Full textDissertations / Theses on the topic "Non-Euclidean spaces"
Garcia, Domingo Josep Lluís. "Real analysis in non-euclidean spaces: trees and spaces of homogeneous type." Doctoral thesis, Universitat de Barcelona, 2003. http://hdl.handle.net/10803/2124.
Full textEl contenido de esta tesis se enmarca dentro del Análisis Real. En particular, trata del estudio de ciertos problemas de la teoría de pesos, (una referencia clásica sobre esta teoría es el libro de J. García-Cuerva y J.L. Rubio de Francia [GR]). Nosotros consideramos, por este orden, tres problemas clásicos diferentes, que abarcan buena parte de la teoría de pesos:
(i) Estudio de las inclusiones para espacios con pesos y acotación de operadores integrales entre estos espacios.
(ii) Estudio de propiedades funcionales de espacios con pesos asociados a una reordenada decreciente de funciones.
(iii) Estudio de la acotación de operadores maximales asociados a regiones de aproximación entre espacios con pesos.
Todos estos problemas han sido tratados extensamente en la literatura. Nuestro enfoque ha sido el de extender estos resultados a espacios con la mínima estructura necesaria. Concretamente, hemos trabajado respectivamente en cada capítulo en los siguientes contextos:
(i) Espacios de medida arbitrarios.
(ii) Árboles.
(iii) Espacios de tipo homogéneo.
Puesto que un árbol puede ser a su vez un espacio de medida, o puesto que su frontera puede ser un espacio de tipo homogéneo, algunos resultados para espacios de medida y espacios de tipo homogéneo han sido aplicados a los árboles (véanse los capítulos primero y tercero). En cambio, en el capítulo segundo trabajamos exclusivamente en árboles.
Los espacios donde hemos desarrollado nuestra teoría no poseen, en general, ningún tipo de estructura algebraica. Por tanto, todos los resultados persiguen un objetivo común: la extensión de la teoría de pesos a espacios no euclidianos.
Vincent, Hugh. "Using geometric algebra to interactively model the geometry of Euclidean and non-Euclidean spaces." Thesis, Middlesex University, 2007. http://eprints.mdx.ac.uk/6750/.
Full textSchötz, Christof [Verfasser], and Enno [Akademischer Betreuer] Mammen. "The Fréchet Mean and Statistics in Non-Euclidean Spaces / Christof Schötz ; Betreuer: Enno Mammen." Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1232409782/34.
Full textHaxhi, Karen Kleinschmidt. "The euclidean and hyperbolic geometry underlying M.C. Escher's regular division designs /." View abstract, 1998. http://library.ctstateu.edu/ccsu%5Ftheses/1491.html.
Full textThesis advisor: Dr. Jeffrey McGowan. "...in partial fulfillment of the requirements for the degree of Master of Science." Includes bibliographical references (leaves [78-79]).
Senger, Steven Iosevich Alex. "Erdős distance problem in the hyperbolic half-plane." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/5341.
Full textRippy, Scott Randall. "Applications of hyperbolic geometry in physics." CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1099.
Full textBobuľa, Matej. "Neeuklidovské vykreslování ve VR." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445563.
Full textBarfield, Naren Anthony. "Integrated artworks : theory and practice in relation to printmaking and computers, and the influence of 'non-Euclidean geometry' and the 'fourth dimension' on developments in twentieth-century pictoral space." Thesis, Open University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299913.
Full textDhinagar, Nikhil J. "Non-Invasive Skin Cancer Classification from Surface Scanned Lesion Images." Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1366384987.
Full textSchmidt, Elvis. "O ensino de geometria projetiva na educação básica: uma proposta para apreensão do conhecimento do mundo tridimensional." Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1371.
Full textNa busca por uma melhor representação da realidade tridimensional, as Geometrias não- Euclidianas oferecem uma alternativa ao euclidianismo clássico e um dos destaques e a Geometria Projetiva. Assim, o objetivo deste trabalho e, através de ilustrações, contribuir para a assimilação de definições como perspectiva, projeção e o principio da dualidade. E, a partir de resultados importantes como o Teorema de Desargues, o Teorema de Pappus e o Teorema de Pascal, queremos facilitar a compreensão e a visualização de algumas das técnicas de perspectiva que podem ser adaptadas para o uso na sala de aula pelos professores da Educação B ́ sica. A aplicação de uma oficina de Geometria Projetiva em uma turma do 6o ano do Ensino Fundamental e a avaliação dos resultados revelaram que o tema pode ser desenvolvido de maneira promissora com os estudantes na Educação B ́ sica, obtendo uma melhor compreensão do objeto real e associando-o ao conteúdo matemático envolvido.
In search for a better representation of three-dimensional reality, non-Euclidean Geometries offer an alternative to the classic euclidianism and the Projective Geometry is one of the highlights. The purpose of this word is contribute to the assimilation of definitions such as perspective, projection, and the principle of duality, through illustrations. And, from important results as Desargues’ Theorem, Pappus’ Theorem and Pascal’s Theorem, we want to facilitate understanding and viewing some of the perspective techniques that can be adapted for use in classroom by Basic Education teachers. The application of a workshop of Projective Geometry in a class of 6th grade of elementary school and the evaluation of the results revealed that the theme can be developed in a promising way with students in basic education, getting a better comprehension of the real object and associating it to the mathematical content involved.
Books on the topic "Non-Euclidean spaces"
Borwein, Jonathan M. Convex functions: Constructions, characterizations and counterexamples. Cambridge: Cambridge University Press, 2010.
Find full textJeremy, Gray. Ideas of space: Euclidean, non-Euclidean, and relativistic. 2nd ed. Oxford: Clarendon Press, 1989.
Find full textOuter billiards on kites. Princeton, N.J: Princeton University Press, 2009.
Find full textAravinda, C. S. Geometry, groups and dynamics: ICTS program, groups, geometry and dynamics, December 3-16, 2012, CEMS, Kumaun University, Almora, India. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textBolyai, János. Appendix, the theory of space. Amsterdam: North-Holland, 1987.
Find full textAppendix, the theory of space. Budapest: Akadémiai Kiadó, 1987.
Find full textRozenfelʹd, Boris Abramovich. A history of non-Euclidean geometry: Evolution of the concept of a geometric space. New York: Springer-Verlag, 1988.
Find full textJeremy, Gray. János Bolyai, non-Euclidean geometry, and the nature of space. Cambridge, Mass: Burndy Library, 2004.
Find full textAh istory of non-euclidean geometry: Evolution of the concept of a geometric space. New York: Springer-Verlag, 1987.
Find full textTazzioli, Rossana. Beltrami e i matematici "relativisti": La meccanica in spazi curvi nella seconda metà dell'Ottocento. Bologna: Pitagora, 2000.
Find full textBook chapters on the topic "Non-Euclidean spaces"
Ren, Wei, Yoan Miche, Ian Oliver, Silke Holtmanns, Kaj-Mikael Bjork, and Amaury Lendasse. "On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces." In Lecture Notes in Computer Science, 3–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66808-6_1.
Full textGorelik, E., J. Lindenstrauss, and M. Rudelson. "Uniform Non-Equivalence between Euclidean and Hyperbolic Spaces." In Geometric Aspects of Functional Analysis, 103–9. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9090-8_10.
Full textHuckemann, Stephan F. "(Semi-)Intrinsic Statistical Analysis on Non-Euclidean Spaces." In Contributions to Statistics, 103–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11149-0_7.
Full textCasey, Stephen D. "Harmonic Analysis in Non-Euclidean Spaces: Theory and Application." In Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science, 565–601. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55556-0_6.
Full textMiche, Yoan, Ian Oliver, Wei Ren, Silke Holtmanns, Anton Akusok, and Amaury Lendasse. "Practical Estimation of Mutual Information on Non-Euclidean Spaces." In Lecture Notes in Computer Science, 123–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66808-6_9.
Full textBhattacharya, Subhrajit, Robert Ghrist, and Vijay Kumar. "Multi-robot Coverage and Exploration in Non-Euclidean Metric Spaces." In Springer Tracts in Advanced Robotics, 245–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36279-8_15.
Full textBhattacharya, Rabi, Lizhen Lin, and Victor Patrangenaru. "Fréchet Means and Nonparametric Inference on Non-Euclidean Geometric Spaces." In Springer Texts in Statistics, 303–15. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-4032-5_12.
Full textHuckemann, Stephan, and Benjamin Eltzner. "Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spaces." In Handbook of Variational Methods for Nonlinear Geometric Data, 317–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31351-7_10.
Full textDostert, Maria, and Alexander Kolpakov. "Kissing Number in Non-Euclidean Spaces of Constant Sectional Curvature." In Trends in Mathematics, 574–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83823-2_92.
Full textSaxena, Chandni, Tianyu Liu, and Irwin King. "A Survey of Graph Curvature and Embedding in Non-Euclidean Spaces." In Neural Information Processing, 127–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63833-7_11.
Full textConference papers on the topic "Non-Euclidean spaces"
Oxburgh, Stephen, Chris D. White, Georgios Antoniou, Lena Mertens, Christopher Mullen, Jennifer Ramsay, Duncan McCall, and Johannes Courtial. "Windows into non-Euclidean spaces." In SPIE Optical Engineering + Applications, edited by G. Groot Gregory and Arthur J. Davis. SPIE, 2014. http://dx.doi.org/10.1117/12.2061418.
Full textZeyen, Max, Tobias Post, Hans Hagen, James Ahrens, David Rogers, and Roxana Bujack. "Color Interpolation for Non-Euclidean Color Spaces." In 2018 IEEE Scientific Visualization Conference (SciVis). IEEE, 2018. http://dx.doi.org/10.1109/scivis.2018.8823597.
Full text"CLASSIFICATION USING HIGH ORDER DISSIMILARITIES IN NON-EUCLIDEAN SPACES." In International Conference on Pattern Recognition Applications and Methods. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0003779503060309.
Full textDyachkov, V. V., Y. A. Zaripova, and A. V. Yushkov. "Experimental Foundations of Nuclear Physics in Non-Euclidean Spaces." In International Symposium on Exotic Nuclei EXON-2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811209451_0055.
Full textSonghao, Zhu, Hu Juanjuan, and Sun Wei. "Image classification using three order statistics in non-Euclidean spaces." In 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013. http://dx.doi.org/10.1109/ccdc.2013.6560896.
Full textChen, Lingling, Songhao Zhu, Zhuofan Li, and Juanjuan Hu. "Image classification via learning dissimilarity measure in non-euclidean spaces." In 2014 33rd Chinese Control Conference (CCC). IEEE, 2014. http://dx.doi.org/10.1109/chicc.2014.6895718.
Full textBiggs, James D. "Quadratic Hamiltonians on non-Euclidean spaces of arbitrary constant curvature." In 2013 European Control Conference (ECC). IEEE, 2013. http://dx.doi.org/10.23919/ecc.2013.6669107.
Full textHu, Juanjuan, Songhao Zhu, and Baojie Fan. "Improving Tagging Quality via Learning Dissimilarity Measure in Non-Euclidean Spaces." In 2013 2nd IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 2013. http://dx.doi.org/10.1109/acpr.2013.112.
Full textChen, Lingling, and Songhao Zhu. "Improving Image Classification Quality Via Dissimilarity Measure In Non-Euclidean Spaces." In 2015 International Symposium on Computers and Informatics. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/isci-15.2015.91.
Full textGhosh, S., and D. Roy. "A Family of Runge-Kutta Based Explicit Methods for Rotational Dynamics." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41396.
Full text