Academic literature on the topic 'Non-ergodicity in many body systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-ergodicity in many body systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-ergodicity in many body systems"
De Roeck, Wojciech, and John Z. Imbrie. "Many-body localization: stability and instability." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2108 (October 30, 2017): 20160422. http://dx.doi.org/10.1098/rsta.2016.0422.
Full textBlok, B., and X. G. Wen. "Many-body systems with non-abelian statistics." Nuclear Physics B 374, no. 3 (May 1992): 615–46. http://dx.doi.org/10.1016/0550-3213(92)90402-w.
Full textHess, P. W., P. Becker, H. B. Kaplan, A. Kyprianidis, A. C. Lee, B. Neyenhuis, G. Pagano, et al. "Non-thermalization in trapped atomic ion spin chains." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2108 (October 30, 2017): 20170107. http://dx.doi.org/10.1098/rsta.2017.0107.
Full textMoore, Joel E. "A perspective on quantum integrability in many-body-localized and Yang–Baxter systems." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2108 (October 30, 2017): 20160429. http://dx.doi.org/10.1098/rsta.2016.0429.
Full textPonte, Pedro, C. R. Laumann, David A. Huse, and A. Chandran. "Thermal inclusions: how one spin can destroy a many-body localized phase." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2108 (October 30, 2017): 20160428. http://dx.doi.org/10.1098/rsta.2016.0428.
Full textFreese, Johannes, Boris Gutkin, and Thomas Guhr. "Spreading in integrable and non-integrable many-body systems." Physica A: Statistical Mechanics and its Applications 461 (November 2016): 683–93. http://dx.doi.org/10.1016/j.physa.2016.06.008.
Full textBiehs, Svend-Age. "Thermal radiation in dipolar many-body systems." EPJ Web of Conferences 266 (2022): 07001. http://dx.doi.org/10.1051/epjconf/202226607001.
Full textLindgren, Ingvar, Sten Salomonson, and Daniel Hedendahl. "New approach to many-body quantum-electrodynamics calculations:merging quantum electrodynamics with many-body perturbation." Canadian Journal of Physics 83, no. 4 (April 1, 2005): 395–403. http://dx.doi.org/10.1139/p05-012.
Full textZhang, Xueyue, Eunjong Kim, Daniel K. Mark, Soonwon Choi, and Oskar Painter. "A superconducting quantum simulator based on a photonic-bandgap metamaterial." Science 379, no. 6629 (January 20, 2023): 278–83. http://dx.doi.org/10.1126/science.ade7651.
Full textGritsev, Vladimir, Peter Barmettler, and Eugene Demler. "Scaling approach to quantum non-equilibrium dynamics of many-body systems." New Journal of Physics 12, no. 11 (November 3, 2010): 113005. http://dx.doi.org/10.1088/1367-2630/12/11/113005.
Full textDissertations / Theses on the topic "Non-ergodicity in many body systems"
Fusco, Lorenzo. "Non-equilibrium thermodynamics in quantum many-body systems." Thesis, Queen's University Belfast, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.706680.
Full textHenriet, Loïc. "Non-equilibrium dynamics of many body quantum systems." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX036/document.
Full textThis thesis deals with the study of dynamical properties of out-of-equilibrium quantum systems. We introduce in particular a general class of Spin-Boson models, which describe for example light-matter interaction or dissipative phenomena. We contribute to the development of a stochastic approach to describe the spin dynamics in these models. In this context, the effect of the bosonic environment is encapsulated into additional stochastic degrees of freedom whose time-correlations are determined by spectral properties of the bosonic environment. We use this approach to study many-body phenomena such as the dissipative quantum phase transition induced by an ohmic bosonic environment. Synchronization phenomena as well as dissipative topological transitions are identified. We also progress in the study of arrays of interacting light-matter systems. These theoretical developments follow recent experimental achievements, which could ensure a quantitative study of these phenomena. This notably includes ultra-cold atoms, trapped ions and cavity and circuit electrodynamics setups. We also investigate hybrid systems comprising electronic quantum dots coupled to electromagnetic resonators, which enable us to provide a spectroscopic analysis of many-body phenomena linked to the Kondo effect. We also introducethermoelectric applications in these devices
Fedorov, Aleksey. "Non-conventional Many-body Phases in Ultracold Dipolar Systems." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS580/document.
Full textThe problem of revealing anddescribing novel macroscopic quantum statescharacter- ized by exotic and non-conventionalproperties is of fundamental importance formodern physics. Such states offer fascinatingprospects for potential applications in quantumin- formation processing, quantum simulation,and material research. In the present Thesis wedevelop a theory for describing nonconventionalphases of ultracold dipolar gases.The related systems of large-spin atoms, polarmolecules, and dipolar excitons in semiconductorsare actively studied in experiments.We put the main emphasis on revealing the roleof the long-range character of the dipole-dipoleinteraction.We consider the effect of rotonization for a 2Dweakly interacting gas of tilted dipolar bosonsin a homogeneous layer. We predict the effectof rotonization for a weakly correlated Bosegas of dipolar excitons in a semiconductorlayer and calculate the stability diagram. Wethen consider p-wave superfluids of identicalfermions in 2D lattices. Finally, we discussanother interesting novel superfluid offermionic polar molecules
Gils, Charlotte. "Phases of interacting many-body systems: from classical systems to non-abelian anyons /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18141.
Full textMoosavi, Per. "Interacting fermions and non-equilibrium properties of one-dimensional many-body systems." Licentiate thesis, KTH, Teoretisk fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193330.
Full textQC 20161003
Bertini, Bruno. "Non-equilibrium dynamics of interacting many-body quantum systems in one dimension." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:1e2c50b9-73b3-4ca0-a5f3-276f967c3720.
Full textBuchhold, Michael. "Thermalization and Out-of-Equilibrium Dynamics in Open Quantum Many-Body Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-181786.
Full textSchiulaz, Mauro. "Ideal quantum glass transitions: many-body localization without quenched disorder?" Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4908.
Full textStaniscia, Fabio. "Out-of-equilibrium behavior of many-body Hamiltonian systems with different interaction ranges." Doctoral thesis, Università degli studi di Trieste, 2011. http://hdl.handle.net/10077/4972.
Full textIn this Thesis we describe the theoretical-computational study performed on the behavior of isolated systems, far from thermodynamic equilibrium. Analyzing models well-known in literature we follow a path bringing to the classification of different behaviors in function of the interaction range of the systems' particles. In the case of systems with long-range interaction we studied the "Quasi-Stationary states" (QSSs) which emerge at short times when the system evolves with Hamiltonian dynamics. Their interest is in the fact that in many physical systems, such as self-gravitating systems, plasmas and systems characterized by wave-particle interaction, QSSs are the only experimentally accessible regime. QSS are defined as stable solutions of the Vlasov equation and, as their duration diverges with the system size, for large systems' size they can be seen as the true equilibria. They do not follow the Boltzmann statistics, and it does not exists a general theory which describes them. Anyway it is possible to give an approximate description using Lynden-Bell theory. One part of the thesis is devoted to shed light on the characteristics of the phase diagram of the "Hamiltonian mean field" model (HMF), during the QSS, calculated with the Lynden-Bell theory. The results of our work allowed to confirm numerically the presence of a phase re-entrance. In the Thesis is present also a detailed description on the system's caloric curves and on the metastability. Still in this context we show an analysis of the equivalence of the statistical ensembles, confirmed in almost the totality of the phase diagram (except for a small region), although the presence of negative specific heat in the microcanonical ensemble, which in Boltzmannian systems implies the non-equivalence of statistical ensembles. This result allowed us to arrive to a surprising conclusion: the presence of negative specific heat in the canonical ensemble. Still in the context of long-range interacting systems we analyze the linear stability of the non-homogeneous QSSs with respect to the Vlasov equation. Since the study of QSS find an application in the Free-electron laser (FEL) and other light sources, which are characterized by wave-particle interaction, we analyze, in the last chapter, the experimental perspectives of our work in this context. The other class of systems we studied are short-range interacting systems. Here the behavior of the components of the system is strongly influenced by the neighbors, and if one takes a system in a disordered state (a zero magnetization state for magnetic systems), which relaxes towards an ordered equilibrium state, one sees that the ordering process first develops locally and then extends to the whole system forming domains of opposed magnetization which grow in size. This process is called "coarsening". Our work in this field consisted in investigating numerically the laws of scale, and in the Thesis we characterize the temporal dependence of the domain sizes for different interaction ranges and we show a comparison between Hamiltonian and Langevin dynamics. This work inserts in the open debate on the equivalence of different dynamics where we found that, at least for times not too large, the two dynamics give different scaling laws.
In questa Tesi è stato fatto uno studio di natura teorico-computazionale sul comportamento dei sistemi isolati lontani dall'equilibrio termodinamico. Analizzando modelli noti in letteratura è stato seguito un percorso che ha portato alla classificazione di differenti comportamenti in funzione del range di interazione delle particelle del sistema. Nel caso di sistemi con interazione a lungo raggio sono stati studiati gli "stati quasi-stazionari" (QSS) che emergono a tempi brevi quando il sistema evolve con dinamica hamiltoniana. Il loro interesse risiede nel fatto che in molti sistemi fisici, come i sistemi auto-gravitanti, plasmi e sistemi caratterizzati da interazione onda-particella, i QSS risultano essere gli unici regimi accessibili sperimentalmente. I QSS sono definiti come soluzioni stabili dell'equazione di Vlasov, e visto che la loro durata diverge con la taglia del sistema, per sistemi di grandi dimensioni possono essere visti come i veri stati di equilibrio. Questi non seguono la statistica di Bolzmann, e non esiste una teoria generale che li descriva. E' tuttavia possibile fare una descrizione approssimata utilizzando la teoria di Lynden-Bell. Una parte della tesi è dedicata alla comprensione delle caratteristiche del diagramma di fase del modello "Hamiltonian mean field" (HMF) durante il QSS, calcolato con la teoria di Lynden-Bell. Il risultato del nostro lavoro ha permesso di confermare numericamente la presenza di fasi rientrati. E' inoltre presente un'analisi dettagliata sulle curve caloriche del sistema e sulla metastabilità. Sempre in questo contesto è stata fatto uno studio sull'equivalenza degli ensemble statistici, confermata nella quasi totalità del diagramma di fase (tranne in una piccola regione), nonostante la presenza di calore specifico negativo nell'insieme microcanonico, che in sistemi Boltzmanniani è sinonimo di non-equivalenza degli ensemble statistici. Questo risultato ci ha permesso di arrivare ad una sorprendente conclusione: la presenza di calore specifico negativo nell'insieme canonico. Sempre nel contesto dei sistemi con interazione a lungo range, è stata analizzata la stabilità lineare rispetto all'equazione di Vlasov degli stati quasi-stazionari non-omogenei. Poiché lo studio dei QSS trova applicazione nel Free-electron laser (FEL) e in altre sorgenti di luce, caratterizzate dall'interazione onda-particella, abbiamo analizzato anche le prospettive sperimentali del nostro lavoro in questo contesto. L'altra classe di sistemi che è stata studiata sono i sistemi con interazione a corto raggio. Qui il comportamento dei componenti del sistema è fortemente influenzato dai vicini, e se si prende un sistema in uno stato disordinato (a magnetizzazione nulla nei sistemi magnetici) che rilassa verso l'equilibrio ordinato, si vede che il processo di ordinamento si sviluppa prima localmente e poi si estende a tutto il sistema formando dei domini di magnetizzazione opposta che crescono in taglia. Questo processo si chiama "coarsening". Il nostro lavoro in questo contesto è consistito in una investigazione numerica delle leggi di scala, e nella tesi è stata caratterizzata la dipendenza temporale della taglia dei domini per differenti range di interazione ed è stato fatto un confronto fra dinamica hamiltoniana e dinamica di Langevin. Questi risultati si inseriscono nel dibattito aperto sull'equivalenza di differenti dinamiche, e si è mostrato che, almeno per tempi non troppo grandi, le due dinamiche portano a leggi di scala differenti.
XXIII Ciclo
1982
Roggero, Alessandro. "Ground state and dynamical properties of many-body systems by non conventional Quantum Monte Carlo algorithms." Doctoral thesis, Università degli studi di Trento, 2014. https://hdl.handle.net/11572/367745.
Full textBooks on the topic "Non-ergodicity in many body systems"
NATO Advanced Study Institute on Dynamics : Models and Kinetic Methods for Non-equilibrium Many Body Systems (1998 Lorentz Institute, Leiden University). Dynamics: Models and kinetic methods for non-equilibrium many body systems. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textKarkheck, John. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Dordrecht: Springer Netherlands, 2002.
Find full textKarkheck, John, ed. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-011-4365-3.
Full textDynamics Models and Kinetic Methods for Non- equilibrium Many body Systems. Springer, 2000.
Find full textKarkheck, John. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Springer, 2011.
Find full textKarkheck, John. Dynamics: Models and Kinetic Methods for Non-Equilibrium Many-Body Systems. Springer, 2000.
Find full textGlocker, Christoph. Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Springer, 2012.
Find full textGlocker, Christoph. Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Springer, 2013.
Find full textGlocker, Christoph. Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Springer, 2012.
Find full textSet-Valued Force Laws: Dynamics of Non-Smooth Systems (Lecture Notes in Applied and Computational Mechanics). Springer, 2001.
Find full textBook chapters on the topic "Non-ergodicity in many body systems"
Fransson, Jonas. "Many-Body Representation of Physical Systems." In Non-Equilibrium Nano-Physics, 1–11. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9210-6_1.
Full textBlom, Kristian. "Bethe-Guggenheim Approximation for Non-uniform Systems." In Pair-Correlation Effects in Many-Body Systems, 35–56. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-29612-3_3.
Full textNovoselsky, Akiva, and Jacob Katriel. "Non-Spurious Harmonic Oscillator States for Many-Body Systems." In Recent Progress in Many-Body Theories, 175–82. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3798-4_16.
Full textZon, R., H. Beijeren, and J. R. Dorfman. "Kinetic Theory of Dynamical Systems." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 131–67. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_8.
Full textLindgren, Ingvar. "Relativistic and Non-Relativistic Many-Body Procedure, Applied to Atomic Systems." In Lecture Notes in Chemistry, 367–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-61330-2_20.
Full textPiasecki, J. "Stationary States in Systems with Dissipative Interactions." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 279–95. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_16.
Full textGaspard, Pierre. "Scattering, Transport & Stochasticity in Quantum Systems." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 425–56. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_25.
Full textPiasecki, J., and Ya G. Sinai. "A Model of Non-Equilibrium Statistical Mechanics." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 191–99. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_10.
Full textBocquet, Lydéric, and Jean-Pierre Hansen. "Dynamics of Colloidal Systems: Beyond the Stochastic Approach." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 1–16. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_1.
Full textChernov, N. "Statistical Properties of Chaotic Systems in High Dimensions." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 201–14. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_11.
Full textConference papers on the topic "Non-ergodicity in many body systems"
Liu, Xueying, Xuezao Ren, Kelin Wang, Xiaohong Li, and Xiaoming Lin. "Non-perturbation calculation for the dynamic problem of quantum many-body systems." In CIOP100, edited by Yue Yang. SPIE, 2018. http://dx.doi.org/10.1117/12.2505698.
Full textScherer, Norbert F. "Negative torque and many-body non-conservative dynamics in optical matter systems." In Optical Trapping and Optical Micromanipulation XVII, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2020. http://dx.doi.org/10.1117/12.2568967.
Full textSEMKAT, D., and M. BONITZ. "NON–LORENTZIAN SPECTRAL FUNCTIONS FOR COULOMB SYSTEMS." In Proceedings of the Conference “Kadanoff-Baym Equations: Progress and Perspectives for Many-Body Physics”. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793812_0041.
Full textŠPIČKA, V., P. LIPAVSKÝ, and K. MORAWETZ. "SPACE–TIME VERSUS PARTICLE–HOLE SYMMETRY OF NON–LOCAL COLLISIONS IN AN KINETIC EQUATION FOR FERMI SYSTEMS." In Proceedings of the Conference “Kadanoff-Baym Equations: Progress and Perspectives for Many-Body Physics”. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793812_0009.
Full textKusnezov, Dimitri. "Quantum systems, spectrum generating algebras and non-compact lie algebras." In Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5124587.
Full textTang, Jiping, and Gordon Parker. "Input Shaping Vibration Control for Nonminimum Phase Systems." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37665.
Full textMukherjee, Rudranarayan M. "Operational Space Algorithm for Flexible Multibody Systems With Generalized Topologies." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48657.
Full textVan Auken, R. Michael. "Development and Comparison of Laplace Domain Models for Non-Slender Beams and Application to a Half-Car Model With Flexible Body." In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20348.
Full textKhan, Imad M., Woojin Ahn, Kurt Anderson, and Suvranu De. "Multi-Flexible-Body Simulations Using Interpolating Splines in a Divide-and-Conquer Scheme." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12217.
Full textSado, Danuta. "The Periodic and Chaotic Vibration of Dynamical System With Elastic Pendulum." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95636.
Full textReports on the topic "Non-ergodicity in many body systems"
Zhu, Jianxin, and Benedikt Fauseweh. Digital quantum simulation of non-equilibrium quantum many-body systems. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1868210.
Full textDeMille, David, and Karyn LeHur. NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1108018.
Full textLehtimaki, Susanna, Aisling Reidy, Kassim Nishtar, Sara Darehschori, Andrew Painter, and Nina Schwalbe. Independent Review and Investigation Mechanisms to Prevent Future Pandemics: A Proposed Way Forward. United Nations University International Institute for Global Health, April 2021. http://dx.doi.org/10.37941/rr/2021/1.
Full textLehtimaki, Susanna, Kassim Nishtar, Aisling Reidy, Sara Darehshori, Andrew Painter, and Nina Schwalbe. Independent Review and Investigation Mechanisms to Prevent Future Pandemics: A Proposed Way Forward. United Nations University International Institute for Global Health, May 2021. http://dx.doi.org/10.37941/pb-f/2021/2.
Full textGothilf, Yoav, Roger Cone, Berta Levavi-Sivan, and Sheenan Harpaz. Genetic manipulations of MC4R for increased growth and feed efficiency in fish. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7600043.bard.
Full text