Academic literature on the topic 'Non-equilibrium many-body systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-equilibrium many-body systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-equilibrium many-body systems"
Gritsev, Vladimir, Peter Barmettler, and Eugene Demler. "Scaling approach to quantum non-equilibrium dynamics of many-body systems." New Journal of Physics 12, no. 11 (November 3, 2010): 113005. http://dx.doi.org/10.1088/1367-2630/12/11/113005.
Full textCai, Zi. "Symmetries and effect of time dimension in non-equilibrium quantum matter." Acta Physica Sinica 70, no. 23 (2021): 230310. http://dx.doi.org/10.7498/aps.70.20211741.
Full textGoihl, Marcel, Mathis Friesdorf, Albert H. Werner, Winton Brown, and Jens Eisert. "Experimentally Accessible Witnesses of Many-Body Localization." Quantum Reports 1, no. 1 (June 17, 2019): 50–62. http://dx.doi.org/10.3390/quantum1010006.
Full textSEIRINGER, ROBERT. "A CORRELATION ESTIMATE FOR QUANTUM MANY-BODY SYSTEMS AT POSITIVE TEMPERATURE." Reviews in Mathematical Physics 18, no. 03 (April 2006): 233–53. http://dx.doi.org/10.1142/s0129055x06002632.
Full textSchmied, Christian-Marcel, Aleksandr N. Mikheev, and Thomas Gasenzer. "Non-thermal fixed points: Universal dynamics far from equilibrium." International Journal of Modern Physics A 34, no. 29 (October 20, 2019): 1941006. http://dx.doi.org/10.1142/s0217751x19410069.
Full textTarasov, Sergey, William Shannon, Vladimir Kocharovsky, and Vitaly Kocharovsky. "Multi-Qubit Bose–Einstein Condensate Trap for Atomic Boson Sampling." Entropy 24, no. 12 (December 3, 2022): 1771. http://dx.doi.org/10.3390/e24121771.
Full textHermanns, S., K. Balzer, and M. Bonitz. "The non-equilibrium Green function approach to inhomogeneous quantum many-body systems using the generalized Kadanoff–Baym ansatz." Physica Scripta T151 (November 1, 2012): 014036. http://dx.doi.org/10.1088/0031-8949/2012/t151/014036.
Full textBonitz, M., N. H. Kwong, D. Semkat, and D. Kremp. "Generalized Kadanoff–Baym Theory for Non–Equilibrium Many–Body Systems in External Fields. An Effective Multi–Band Approach." Contributions to Plasma Physics 39, no. 1-2 (1999): 37–40. http://dx.doi.org/10.1002/ctpp.2150390109.
Full textWatanabe, Haruki, Yankang Liu, and Masaki Oshikawa. "On the General Properties of Non-linear Optical Conductivities." Journal of Statistical Physics 181, no. 6 (October 18, 2020): 2050–70. http://dx.doi.org/10.1007/s10955-020-02654-5.
Full textMi, Xiao, Matteo Ippoliti, Chris Quintana, Ami Greene, Zijun Chen, Jonathan Gross, Frank Arute, et al. "Time-crystalline eigenstate order on a quantum processor." Nature 601, no. 7894 (November 30, 2021): 531–36. http://dx.doi.org/10.1038/s41586-021-04257-w.
Full textDissertations / Theses on the topic "Non-equilibrium many-body systems"
Fusco, Lorenzo. "Non-equilibrium thermodynamics in quantum many-body systems." Thesis, Queen's University Belfast, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.706680.
Full textHenriet, Loïc. "Non-equilibrium dynamics of many body quantum systems." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX036/document.
Full textThis thesis deals with the study of dynamical properties of out-of-equilibrium quantum systems. We introduce in particular a general class of Spin-Boson models, which describe for example light-matter interaction or dissipative phenomena. We contribute to the development of a stochastic approach to describe the spin dynamics in these models. In this context, the effect of the bosonic environment is encapsulated into additional stochastic degrees of freedom whose time-correlations are determined by spectral properties of the bosonic environment. We use this approach to study many-body phenomena such as the dissipative quantum phase transition induced by an ohmic bosonic environment. Synchronization phenomena as well as dissipative topological transitions are identified. We also progress in the study of arrays of interacting light-matter systems. These theoretical developments follow recent experimental achievements, which could ensure a quantitative study of these phenomena. This notably includes ultra-cold atoms, trapped ions and cavity and circuit electrodynamics setups. We also investigate hybrid systems comprising electronic quantum dots coupled to electromagnetic resonators, which enable us to provide a spectroscopic analysis of many-body phenomena linked to the Kondo effect. We also introducethermoelectric applications in these devices
Moosavi, Per. "Interacting fermions and non-equilibrium properties of one-dimensional many-body systems." Licentiate thesis, KTH, Teoretisk fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193330.
Full textQC 20161003
Bertini, Bruno. "Non-equilibrium dynamics of interacting many-body quantum systems in one dimension." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:1e2c50b9-73b3-4ca0-a5f3-276f967c3720.
Full textBuchhold, Michael. "Thermalization and Out-of-Equilibrium Dynamics in Open Quantum Many-Body Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-181786.
Full textStaniscia, Fabio. "Out-of-equilibrium behavior of many-body Hamiltonian systems with different interaction ranges." Doctoral thesis, Università degli studi di Trieste, 2011. http://hdl.handle.net/10077/4972.
Full textIn this Thesis we describe the theoretical-computational study performed on the behavior of isolated systems, far from thermodynamic equilibrium. Analyzing models well-known in literature we follow a path bringing to the classification of different behaviors in function of the interaction range of the systems' particles. In the case of systems with long-range interaction we studied the "Quasi-Stationary states" (QSSs) which emerge at short times when the system evolves with Hamiltonian dynamics. Their interest is in the fact that in many physical systems, such as self-gravitating systems, plasmas and systems characterized by wave-particle interaction, QSSs are the only experimentally accessible regime. QSS are defined as stable solutions of the Vlasov equation and, as their duration diverges with the system size, for large systems' size they can be seen as the true equilibria. They do not follow the Boltzmann statistics, and it does not exists a general theory which describes them. Anyway it is possible to give an approximate description using Lynden-Bell theory. One part of the thesis is devoted to shed light on the characteristics of the phase diagram of the "Hamiltonian mean field" model (HMF), during the QSS, calculated with the Lynden-Bell theory. The results of our work allowed to confirm numerically the presence of a phase re-entrance. In the Thesis is present also a detailed description on the system's caloric curves and on the metastability. Still in this context we show an analysis of the equivalence of the statistical ensembles, confirmed in almost the totality of the phase diagram (except for a small region), although the presence of negative specific heat in the microcanonical ensemble, which in Boltzmannian systems implies the non-equivalence of statistical ensembles. This result allowed us to arrive to a surprising conclusion: the presence of negative specific heat in the canonical ensemble. Still in the context of long-range interacting systems we analyze the linear stability of the non-homogeneous QSSs with respect to the Vlasov equation. Since the study of QSS find an application in the Free-electron laser (FEL) and other light sources, which are characterized by wave-particle interaction, we analyze, in the last chapter, the experimental perspectives of our work in this context. The other class of systems we studied are short-range interacting systems. Here the behavior of the components of the system is strongly influenced by the neighbors, and if one takes a system in a disordered state (a zero magnetization state for magnetic systems), which relaxes towards an ordered equilibrium state, one sees that the ordering process first develops locally and then extends to the whole system forming domains of opposed magnetization which grow in size. This process is called "coarsening". Our work in this field consisted in investigating numerically the laws of scale, and in the Thesis we characterize the temporal dependence of the domain sizes for different interaction ranges and we show a comparison between Hamiltonian and Langevin dynamics. This work inserts in the open debate on the equivalence of different dynamics where we found that, at least for times not too large, the two dynamics give different scaling laws.
In questa Tesi è stato fatto uno studio di natura teorico-computazionale sul comportamento dei sistemi isolati lontani dall'equilibrio termodinamico. Analizzando modelli noti in letteratura è stato seguito un percorso che ha portato alla classificazione di differenti comportamenti in funzione del range di interazione delle particelle del sistema. Nel caso di sistemi con interazione a lungo raggio sono stati studiati gli "stati quasi-stazionari" (QSS) che emergono a tempi brevi quando il sistema evolve con dinamica hamiltoniana. Il loro interesse risiede nel fatto che in molti sistemi fisici, come i sistemi auto-gravitanti, plasmi e sistemi caratterizzati da interazione onda-particella, i QSS risultano essere gli unici regimi accessibili sperimentalmente. I QSS sono definiti come soluzioni stabili dell'equazione di Vlasov, e visto che la loro durata diverge con la taglia del sistema, per sistemi di grandi dimensioni possono essere visti come i veri stati di equilibrio. Questi non seguono la statistica di Bolzmann, e non esiste una teoria generale che li descriva. E' tuttavia possibile fare una descrizione approssimata utilizzando la teoria di Lynden-Bell. Una parte della tesi è dedicata alla comprensione delle caratteristiche del diagramma di fase del modello "Hamiltonian mean field" (HMF) durante il QSS, calcolato con la teoria di Lynden-Bell. Il risultato del nostro lavoro ha permesso di confermare numericamente la presenza di fasi rientrati. E' inoltre presente un'analisi dettagliata sulle curve caloriche del sistema e sulla metastabilità. Sempre in questo contesto è stata fatto uno studio sull'equivalenza degli ensemble statistici, confermata nella quasi totalità del diagramma di fase (tranne in una piccola regione), nonostante la presenza di calore specifico negativo nell'insieme microcanonico, che in sistemi Boltzmanniani è sinonimo di non-equivalenza degli ensemble statistici. Questo risultato ci ha permesso di arrivare ad una sorprendente conclusione: la presenza di calore specifico negativo nell'insieme canonico. Sempre nel contesto dei sistemi con interazione a lungo range, è stata analizzata la stabilità lineare rispetto all'equazione di Vlasov degli stati quasi-stazionari non-omogenei. Poiché lo studio dei QSS trova applicazione nel Free-electron laser (FEL) e in altre sorgenti di luce, caratterizzate dall'interazione onda-particella, abbiamo analizzato anche le prospettive sperimentali del nostro lavoro in questo contesto. L'altra classe di sistemi che è stata studiata sono i sistemi con interazione a corto raggio. Qui il comportamento dei componenti del sistema è fortemente influenzato dai vicini, e se si prende un sistema in uno stato disordinato (a magnetizzazione nulla nei sistemi magnetici) che rilassa verso l'equilibrio ordinato, si vede che il processo di ordinamento si sviluppa prima localmente e poi si estende a tutto il sistema formando dei domini di magnetizzazione opposta che crescono in taglia. Questo processo si chiama "coarsening". Il nostro lavoro in questo contesto è consistito in una investigazione numerica delle leggi di scala, e nella tesi è stata caratterizzata la dipendenza temporale della taglia dei domini per differenti range di interazione ed è stato fatto un confronto fra dinamica hamiltoniana e dinamica di Langevin. Questi risultati si inseriscono nel dibattito aperto sull'equivalenza di differenti dinamiche, e si è mostrato che, almeno per tempi non troppo grandi, le due dinamiche portano a leggi di scala differenti.
XXIII Ciclo
1982
Schiulaz, Mauro. "Ideal quantum glass transitions: many-body localization without quenched disorder?" Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4908.
Full textCovito, Fabio [Verfasser], and Angel [Akademischer Betreuer] Rubio. "An efficient ab-initio non-equilibrium Green's function approach to carrier dynamics in many-body interacting systems / Fabio Covito ; Betreuer: Angel Rubio." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2020. http://d-nb.info/1218688459/34.
Full textGeier, Kevin Thomas. "Probing Dynamics and Correlations in Cold-Atom Quantum Simulators." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/351120.
Full textI simulatori quantistici ad atomi freddi offrono possibilità uniche per preparare, manipolare e sondare sistemi quantistici a molti corpi. Tuttavia, nonostante l'alto livello di controllo raggiunto negli esperimenti moderni, non tutte le osservabili di interesse sono facilmente accessibili. Lo scopo di questa tesi è quello di stabilire protocolli per misurare delle proprietà statiche e dinamiche dei sistemi quantistici attualmente inaccessibili. La fattibilità sperimentale di questi schemi è illustrata mediante simulazioni numeriche per applicazioni rilevanti nella fisica a molti corpi e nella simulazione quantistica. In particolare, introduciamo un metodo generale per misurare le correlazioni dinamiche basato su una risposta lineare non hermitiana. Ciò consente test imparziali della famosa relazione fluttuazione-dissipazione come sonda di termalizzazione in sistemi quantistici isolati. Inoltre, sviluppiamo tecniche basate su ancilla per la misura di correnti e correlazioni di corrente, consentendo la caratterizzazione della materia quantistica fortemente correlata. Un'altra applicazione è orientata a rivelare l'impronta della supersolidità nei gas Bose con accoppiamento spin-orbita eccitando il corrispondente modo di Goldstone. Infine, esploriamo uno scenario per la simulazione quantistica della dinamica di riscaldamento post-inflazione modulando parametricamente un gas Bose e portandolo nel regime della dinamica universale lontana dall'equilibrio. I protocolli presentati si applicano anche ad altre piattaforme di simulazione quantistica analogica e aprono quindi applicazioni promettenti nel campo della scienza e della tecnologia quantistica.
Quantensimulatoren auf Basis ultrakalter Atome eröffnen einzigartige Möglichkeiten zur Präparation, Manipulation und Untersuchung von Quanten-Vielteilchen-Systemen. Trotz des hohen Maßes an Kontrolle in modernen Experimenten sind jedoch nicht alle interessanten Observablen auf einfache Weise zugänglich. Ziel dieser Arbeit ist es, Protokolle zur Messung aktuell nur schwer erfassbarer statischer und dynamischer Eigenschaften von Quantensystemen zu etablieren. Die experimentelle Realisierbarkeit dieser Verfahren wird durch numerische Simulationen anhand relevanter Anwendungen in der Vielteilchenphysik und Quantensimulation veranschaulicht. Insbesondere wird eine allgemeine Methode zur Messung dynamischer Korrelationen basierend auf der linearen Antwort auf nicht-hermitesche Störungen vorgestellt. Diese ermöglicht unabhängige Tests des berühmten Fluktuations-Dissipations-Theorems als Indikator der Thermalisierung isolierter Quantensysteme. Darüber hinaus werden Verfahren zur Messung von Strömen und Strom-Korrelationen mittels Kopplung an einen Hilfszustand entwickelt, welche die Charakterisierung stark korrelierter Quantenmaterie erlauben. Eine weitere Anwendung zielt auf die Enthüllung spezifischer Merkmale von Supersolidität in Spin-Bahn-gekoppelten Bose-Einstein-Kondensaten ab, indem die relevanten Goldstone-Moden angeregt werden. Schließlich wird ein Szenario zur Quantensimulation post-inflationärer Thermalisierungsdynamik durch die parametrische Anregung eines Bose-Gases in das Regime universeller Dynamik fern des Gleichgewichts erschlossen. Die dargestellten Protokolle lassen sich auch auf andere Plattformen für analoge Quantensimulation übertragen und eröffnen damit vielversprechende Anwendungen auf dem Gebiet der Quantentechnologie.
Biebl, Fabian Ralf Anton. "Thermalization in one-dimensional quantum-many-body systems." Doctoral thesis, 2016. http://hdl.handle.net/11858/00-1735-0000-002B-7D11-6.
Full textBooks on the topic "Non-equilibrium many-body systems"
NATO Advanced Study Institute on Dynamics : Models and Kinetic Methods for Non-equilibrium Many Body Systems (1998 Lorentz Institute, Leiden University). Dynamics: Models and kinetic methods for non-equilibrium many body systems. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textKarkheck, John. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Dordrecht: Springer Netherlands, 2002.
Find full textKarkheck, John, ed. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-011-4365-3.
Full textDynamics Models and Kinetic Methods for Non- equilibrium Many body Systems. Springer, 2000.
Find full textKarkheck, John. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Springer, 2011.
Find full textKarkheck, John. Dynamics: Models and Kinetic Methods for Non-Equilibrium Many-Body Systems. Springer, 2000.
Find full textBatterman, Robert W. A Middle Way. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197568613.001.0001.
Full textFox, Raymond. The Use of Self. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780190616144.001.0001.
Full textRaff, Lionel, Ranga Komanduri, Martin Hagan, and Satish Bukkapatnam. Neural Networks in Chemical Reaction Dynamics. Oxford University Press, 2012. http://dx.doi.org/10.1093/oso/9780199765652.001.0001.
Full textBook chapters on the topic "Non-equilibrium many-body systems"
Fransson, Jonas. "Many-Body Representation of Physical Systems." In Non-Equilibrium Nano-Physics, 1–11. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9210-6_1.
Full textPiasecki, J., and Ya G. Sinai. "A Model of Non-Equilibrium Statistical Mechanics." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 191–99. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_10.
Full textZon, R., H. Beijeren, and J. R. Dorfman. "Kinetic Theory of Dynamical Systems." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 131–67. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_8.
Full textPiasecki, J. "Stationary States in Systems with Dissipative Interactions." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 279–95. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_16.
Full textGaspard, Pierre. "Scattering, Transport & Stochasticity in Quantum Systems." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 425–56. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_25.
Full textBocquet, Lydéric, and Jean-Pierre Hansen. "Dynamics of Colloidal Systems: Beyond the Stochastic Approach." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 1–16. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_1.
Full textChernov, N. "Statistical Properties of Chaotic Systems in High Dimensions." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 201–14. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_11.
Full textPosch, H. A., R. Hirschl, and Wm G. Hoover. "Multifractal Phase-Space Distributions for Stationary Nonequilibrium Systems." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 169–89. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_9.
Full textGurevich, V. L. "Some Problems of the Kinetic Theory of Mesoscopic Systems." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 457–71. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_26.
Full textCohen, E. G. D. "Dynamical Systems and Statistical Mechanics: Lyapunov Exponents and Transport Coefficients." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 215–20. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_12.
Full textReports on the topic "Non-equilibrium many-body systems"
Zhu, Jianxin, and Benedikt Fauseweh. Digital quantum simulation of non-equilibrium quantum many-body systems. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1868210.
Full textDeMille, David, and Karyn LeHur. NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1108018.
Full text