Academic literature on the topic 'Non-conducting Polymers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-conducting Polymers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-conducting Polymers"
Pratt, F. L., S. J. Blundell, Th Jestädt, B. W. Lovett, A. Husmann, I. M. Marshall, W. Hayes, et al. "μSR of conducting and non-conducting polymers." Physica B: Condensed Matter 289-290 (August 2000): 625–30. http://dx.doi.org/10.1016/s0921-4526(00)00297-0.
Full textKausar, Ayesha, Ishaq Ahmad, M. H. Eisa, and Malik Maaza. "Avant-Garde Polymer/Graphene Nanocomposites for Corrosion Protection: Design, Features, and Performance." Corrosion and Materials Degradation 4, no. 1 (January 17, 2023): 33–53. http://dx.doi.org/10.3390/cmd4010004.
Full textLawal, Abdulazeez T., and Gordon G. Wallace. "Vapour phase polymerisation of conducting and non-conducting polymers: A review." Talanta 119 (February 2014): 133–43. http://dx.doi.org/10.1016/j.talanta.2013.10.023.
Full textGu, H. B., S. Morita, X. H. Yin, T. Kawai, and K. Yoshino. "Electrical and optical properties of conducting polymer composites consisting of conducting polymers with non-degenerated structure." Synthetic Metals 69, no. 1-3 (March 1995): 449–50. http://dx.doi.org/10.1016/0379-6779(94)02525-4.
Full textDoblhofer, Karl. "The non-metallic character of solvated conducting polymers." Journal of Electroanalytical Chemistry 331, no. 1-2 (January 1992): 1015–27. http://dx.doi.org/10.1016/0022-0728(92)85021-t.
Full textSHARMA, SUDHIR KUMAR. "A NEW OPTICAL WAVEGUIDE FOR TELECOMMUNICATION APPLICATION." Journal of Nonlinear Optical Physics & Materials 10, no. 04 (December 2001): 409–14. http://dx.doi.org/10.1142/s0218863501000784.
Full textAghelinejad, Mohammadmehdi, and Siu Leung. "Thermoelectric Nanocomposite Foams Using Non-Conducting Polymers with Hybrid 1D and 2D Nanofillers." Materials 11, no. 9 (September 18, 2018): 1757. http://dx.doi.org/10.3390/ma11091757.
Full textBabu, Veluru Jagadeesh, V. S. Pavan Kumar, G. J. Subha, Vasantha Kumari, T. S. Natarajan, Appukuttan Sreekumaran Nair, Seeram Ramakrishna, and B. S. Abdur Rahman. "AC Conductivity Studies on PMMA-PANI (HCl) Nanocomposite Fibers Produced by Electrospinning." Journal of Engineered Fibers and Fabrics 6, no. 4 (December 2011): 155892501100600. http://dx.doi.org/10.1177/155892501100600408.
Full textGuo, Liang. "Stretchable Polymeric Neural Electrode Array: Toward a Reliable Neural Interface." MRS Proceedings 1795 (2015): 1–12. http://dx.doi.org/10.1557/opl.2015.567.
Full textMabboux, P. Y., B. Beau, J. P. Travers, and Y. F. Nicolau. "Non-exponential NMR relaxation in heterogeneously doped conducting polymers." Synthetic Metals 84, no. 1-3 (January 1997): 985–86. http://dx.doi.org/10.1016/s0379-6779(96)04243-9.
Full textDissertations / Theses on the topic "Non-conducting Polymers"
Deng, Fenghua. "Coating of electrically conducting polymeric films on the surface of non-conducting substrate." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/30435.
Full textWong, Joyce Yun-Wei. "Electrically conducting polymers for non-invasive control of mammal cell behavior dc by Joyce Yun-Wei Wong." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28081.
Full textNguyen, Ngoc Tan. "Transducteurs ultra fins à base de polymères conducteurs : fabrication, caractérisation et modélisation." Thesis, Valenciennes, 2018. http://www.theses.fr/2018VALE0036/document.
Full textRecently, ultrathin poly (3,4-ethylenedioxythiophene) (PEDOT) – based ionic actuators have overcome some initial obstacles to increase the potential for applications in microfabricateddevices. While microfabrication processing of trilayer actuators that involve no manual handling has been demonstrated, their mechanical performances remain limited for practical applications. The goal of this thesis is to optimize the transducers in thin films fabrication by micro technologies, fully characterize the electrochemomechanical properties of the resulting trilayers, and develop a model to simulate their bidirectional electromechanical ability (actuation and sensing). At first, ultrathin PEDOT-based trilayer actuators are fabricated via the vapor phase polymerization of 3,4-ethylenedioxythiophene combining with the layer by layer synthesis process. This constitutes the first full characterization of ionic PEDOT-based microactuators operating in air of such a small thickness (17 μm) having bending deformation and output force generation of 1% and 12 μN respectively. Secondly, electrical, electrochemical and mechanical properties of the resulting microactuators have been thoroughly studied. Non-linear characterization was extended to volumetric capacitance dependence on voltage window. Damping coefficient was characterized for the first time. Thirdly, a nonlinear multi-physics model was proposed as a method of simulating actuator and sensor responses in trilayers, represented using a Bond Graph formalism, and was able to implement all of the characterized parameters. The concordance between the simulations and the measurements confirmed the accuracy of the model in predicting the non-linear dynamic behavior of the actuators. In addition, the information extracted from the model also provided an insight into the critical parameters of the actuators and how they affect the actuator efficiency, as well as the energy distribution. Finally, a nouveau bidirectional electromechanical linear model was introduced to simulate the sensing ability of the trilayer transducer and was confirmed via experimental results in both frequency and time domains of a sinusoidal input displacement. The resulting actuators and the proposed models are promising for designing, optimizing, and controlling of the future soft microsystem devices where the use of polymer actuators should be essential
Farajollahi, Meisam. "Fabrication and non-linear modeling of conducting polymer-based actuators : toward catheter and tactile display applications." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58649.
Full textApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Dutin, Frédéric. "Spectroscopie linéaire et non-linéaire de polymères conducteurs dans le domaine térahertz." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0022.
Full textThis thesis project aims to study transport mechanisms in conducting polymers PEDOT/PSS and PEDOT/PSTFSIK in the terahertz (THz) domain. These two polymers come from LCPO laboratory.First of all, we studied intrinsics properties of these materials in the THz domain with a THz-TDS experiment. This drove us to show that their transmission is quasi-constant in the THz domain and that the intrinsic conductivity is larger for PEDOT/PSS than PEDOT/PSTFSIK. This last result has been obtained by using two differents fitting models of conduction. The first model, so-called Drude-Smith model, extend the Drude model by adding a trap parameter. It also possess only few fitting parameters. The second one, the Dyre model, take into account of the grain structure of polymers. Nevertheless, it has several fitting parameters. We obtained a direct current conductivity of polymers that is in excellent agreement with LCPO measurements.Among these, we caracterized the behavior of PEDOT/PSS and PEDOT/PSTFSIK under a femtosecond pulse centered in the bipolaronic band. We also have the THz pulse. By using Drude-Smith and Dyre models, we were able to study the change of conductivity induced by the femtosecond pulse in the THz domain. In this case, we supposed that fitting parameters have to be a function of the delay between the femtosecond pulse and the THz pulse.Finally, by studying PEDOT/PSS and PEDOT/PSTFSIK responses for differents pump intensity in a full optic experiment, where we pumped on the bipolaronic band and probed on the polaronic band, we were be able to give a possible scenario for the impact of the optical pump in these materials
Books on the topic "Non-conducting Polymers"
Shadwell, P. W. Critical survey of non-destructive testing techniques for non-conducting materials. Leatherhead, Surrey, England: Era Technology, 1992.
Find full textCarbon Monoxide Sensing Technologies. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901212.
Full textBook chapters on the topic "Non-conducting Polymers"
André, Jean-Marie, Jean-Luc Brédas, and Joseph Delhalle. "A Theoretical Approach to Highly Conducting and Non-linear Optically Active Polymers." In Biological and Artificial Intelligence Systems, 199–217. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3117-6_13.
Full textPethrick, R. A. "Non-destructive evaluation (NDE) of composites: dielectric techniques for testing partially or non-conducting composite materials." In Non-Destructive Evaluation (NDE) of Polymer Matrix Composites, 116–35. Elsevier, 2013. http://dx.doi.org/10.1533/9780857093554.1.116.
Full textP. Mardikar, Satish, Sagar D. Balgude, and Santosh J. Uke. "Supercapacitor Supported by Nickel, Cobalt and Conducting Polymer Based Materials: Design Techniques and Current Advancement." In Supercapacitors [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98355.
Full textMark, James E., Dale W. Schaefer, and Gui Lin. "Some Characterization Techniques Useful for Polysiloxanes." In The Polysiloxanes. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780195181739.003.0006.
Full textNishad, G. R. "Applications of PEDOT:PSS in Solar Cells." In Materials Research Foundations, 40–76. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901410-3.
Full textConference papers on the topic "Non-conducting Polymers"
Geniès, Eugène M. "Conducting polymers on non-conducting substrates: Chemical coating processes and applications." In The proceedings of the 53rd international meeting of physical chemistry: Organic coatings. AIP, 1996. http://dx.doi.org/10.1063/1.49450.
Full textGu, H. B., S. Morita, T. Kawai, and K. Yoshino. "Electrical and optical properties of conducting polymer composites consisting of conducting polymers with non-degenerated structure." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.834864.
Full textOtero, Toribio F., Maria T. Cortes, Iker Boyano, and Genma Vazquez. "Nucleation, non-stoiquiometry, and tactile muscles with conducting polymers." In Smart Structures and Materials, edited by Yoseph Bar-Cohen. SPIE, 2004. http://dx.doi.org/10.1117/12.538603.
Full textVenugopal, Vinithra, Hao Zhang, and Vishnu-Baba Sundaresan. "A Chemo-Mechanical Constitutive Model for Conducting Polymers." In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3218.
Full textSchwartz, Benjamin J., Fumitomo Hide, Mats R. Andersson, and Alan J. Heeger. "Ultrafast Photophysics of Conjugated Polymers, Blends, and Devices." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.fe.30.
Full textMorita, S., K. Yoshimoto, B. K. Park, T. Kawai, R. Sugimoto, and K. Yoshino. "Unique properties of conducting polymers of non-degenerated structures poly(3-alkylthiophene) and poly(9-alkylfluorene) mixed with polyacetylene derivatives poly(o-trimethylsilylphenylacetylene)." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.834868.
Full textNawroj, Ahsan I., John P. Swensen, and Aaron M. Dollar. "Design of a Bulk Conductive Polymer Using Embedded Macroscopic Copper Cells." In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3155.
Full textFan, Chinbay, Michael Onischak, and William Liss. "Advanced Components for PEMFC Stacks." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97144.
Full textMai, Kahnery, Nathan Watts, and George Herman. "Screen Factor Polymer Characterization: Improved Screen Factor Technique, Apparatus, and Analysis." In SPE International Conference on Oilfield Chemistry. SPE, 2023. http://dx.doi.org/10.2118/213837-ms.
Full textBloor, D. "Polymers for non-linear optics: advances and challenges." In IEE Colloquium on Conducting Polymers and Their Applications in Transducers and Instrumentation. IEE, 1996. http://dx.doi.org/10.1049/ic:19961289.
Full textReports on the topic "Non-conducting Polymers"
MacDiarmid, Alan G. Conducting Electronic Polymers by Non-Redox Processes. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada204408.
Full textMacDiarmid, Alan G. Conducting Electronic Polymers by Non-Redox Processes. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada205551.
Full text