Contents
Academic literature on the topic 'Non-canonical initiation codon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-canonical initiation codon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-canonical initiation codon"
Firth, Andrew E., and Ian Brierley. "Non-canonical translation in RNA viruses." Journal of General Virology 93, no. 7 (July 1, 2012): 1385–409. http://dx.doi.org/10.1099/vir.0.042499-0.
Full textPrasad, Sharanya, Shelley Starck, and Nilabh Shastri. "Presentation of cryptic peptides by MHC I molecules is enhanced by inflammatory stimuli. (P5003)." Journal of Immunology 190, no. 1_Supplement (May 1, 2013): 110.2. http://dx.doi.org/10.4049/jimmunol.190.supp.110.2.
Full textColdwell, Mark J., Ulrike Sack, Joanne L. Cowan, Rachel M. Barrett, Markete Vlasak, Keiley Sivakumaran, and Simon J. Morley. "Multiple isoforms of the translation initiation factor eIF4GII are generated via use of alternative promoters, splice sites and a non-canonical initiation codon." Biochemical Journal 448, no. 1 (October 18, 2012): 1–11. http://dx.doi.org/10.1042/bj20111765.
Full textGraça, Rafael, Rafael Fernandes, Ana Catarina Alves, Juliane Menezes, Luísa Romão, and Mafalda Bourbon. "Characterization of Two Variants at Met 1 of the Human LDLR Gene Encoding the Same Amino Acid but Causing Different Functional Phenotypes." Biomedicines 9, no. 9 (September 14, 2021): 1219. http://dx.doi.org/10.3390/biomedicines9091219.
Full textGao, Fei, Maria Wesolowska, Reuven Agami, Koos Rooijers, Fabricio Loayza-Puch, Conor Lawless, Robert N. Lightowlers, and Zofia M. A. Chrzanowska-Lightowlers. "Using mitoribosomal profiling to investigate human mitochondrial translation." Wellcome Open Research 2 (December 11, 2017): 116. http://dx.doi.org/10.12688/wellcomeopenres.13119.1.
Full textGao, Fei, Maria Wesolowska, Reuven Agami, Koos Rooijers, Fabricio Loayza-Puch, Conor Lawless, Robert N. Lightowlers, and Zofia M. A. Chrzanowska-Lightowlers. "Using mitoribosomal profiling to investigate human mitochondrial translation." Wellcome Open Research 2 (January 29, 2018): 116. http://dx.doi.org/10.12688/wellcomeopenres.13119.2.
Full textFecher-Trost, Claudia, Ulrich Wissenbach, Andreas Beck, Pascal Schalkowsky, Christof Stoerger, Janka Doerr, Anna Dembek, et al. "The in Vivo TRPV6 Protein Starts at a Non-AUG Triplet, Decoded as Methionine, Upstream of Canonical Initiation at AUG." Journal of Biological Chemistry 288, no. 23 (April 23, 2013): 16629–44. http://dx.doi.org/10.1074/jbc.m113.469726.
Full textJewett, Mollie W., Sunny Jain, Angelika K. Linowski, Amit Sarkar, and Patricia A. Rosa. "Molecular characterization of the Borrelia burgdorferi in vivo-essential protein PncA." Microbiology 157, no. 10 (October 1, 2011): 2831–40. http://dx.doi.org/10.1099/mic.0.051706-0.
Full textPaudel, Dinesh Babu, and Hélène Sanfaçon. "Mapping of sequences in the 5’ region and 3’ UTR of tomato ringspot virus RNA2 that facilitate cap-independent translation of reporter transcripts in vitro." PLOS ONE 16, no. 4 (April 9, 2021): e0249928. http://dx.doi.org/10.1371/journal.pone.0249928.
Full textAlekhina, Olga, Ilya Terenin, Sergey Dmitriev, and Konstantin Vassilenko. "Functional Cyclization of Eukaryotic mRNAs." International Journal of Molecular Sciences 21, no. 5 (February 29, 2020): 1677. http://dx.doi.org/10.3390/ijms21051677.
Full textDissertations / Theses on the topic "Non-canonical initiation codon"
Condé, Lionel. "Contrôle traductionnel du SARS-CoV-2." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0010.
Full textDuring viral infection, the regulation of gene expression is central to the complex interactions between the host and the pathogen. Viruses exploit the host's cellular machinery to ensure the synthesis of their proteins, which are necessary for replication and the spread of the infection. This is particularly the case with SARS-CoV-2 infection, which rapidly induces a global inhibition of cellular translation through the action of viral factors such as the Nsp1 protein. To efficiently produce its proteins, the virus must implement strategies to bypass this inhibition. The SARS-CoV-2 genome is expressed from 10 RNAs, the genomic RNA (gRNA) and 9 subgenomic RNAs that possess a common leader region but unique 5'UTR regions for each of the transcripts. My work focused on the structural elements that regulate the translation of the different SARS-CoV-2 RNAs.Through a series of in vitro (reticulocyte lysate) and in-cell experiments, we discovered that the translation efficiency varied significantly among the different viral RNAs. In particular, the genomic RNA, despite its complex structure, distinguishes itself by its remarkably high translation efficiency. We also determined that the SL1 stem-loop structure, present in all viral transcripts, was a major determinant for RNA expression and also played a crucial role in countering the inhibition induced by the Nsp1 viral protein. We established that translation initiation occurred through a cap-dependent mechanism and required the eIF4F complex. Finally, our study also characterized the role of two short upstream open reading frames (uORFs) found in certain 5'UTR regions of SARS-CoV-2 RNAs; these uORFs have variable impacts depending on their position
Knight, Helen Coral. "Alternative non-canonical translation initiation codons are used to synthesise novel isoforms of the transcription factor GATAD1." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/413444/.
Full text