Academic literature on the topic 'Non-C. elegans embryos'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-C. elegans embryos.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Non-C. elegans embryos"

1

Schierenberg, Einhard. "Early development of nematode embryos: differences and similarities." Nematology 2, no. 1 (2000): 57–64. http://dx.doi.org/10.1163/156854100508890.

Full text
Abstract:
AbstractTo determine whether embryogenesis of Caenorhabditis elegans is typical for nematodes in general, we started to analyse in comparison several aspects of development in various nematode species. The differences we observed can be subdivided into two classes, those visible in the intact embryo and those requiring experimental interference. Particularly obvious differences of both types were revealed between C. elegans (Rhabditidae) and Acrobeloides nanus (Cephalobidae). Not only does the spatial and temporal pattern of early events differ but also that of intercellular communication and cell specification. Our data suggest that some developmental variations are characteristic for certain nematode groups and therefore may be useful as phylogenetic markers. In contrast, we detected little evidence so far for environmental influence on early developmental processes. Pour déterminer dans quelle mesure l’embryogenèse de Caenorhabditis elegans est une caractéristique générale des nématodes, nous avons commencé l’analyse de plusieurs aspects du développement chez différentes espèces de nématodes. Les différences observées peuvent être divisées en deux catégories: celles observables chez l’embryon intact et celles nécessitant une intervention expérimentale. En particulier, des différences nettes entre les deux catégories ont été mises en évidence chez C. elegans (Rhabditidae) et Acrobeloides nanus (Cephalobidae). Diffèrent non seulement le schéma spatio-temporel des évènements précoces, mais également la communication intercellulaire et la différenciation cellulaire. Nos données suggèrent que certaines variations du développement sont caractéristiques de certains groupes de nématodes et pourraient donc être utiles comme marqueurs phylogénétiques. A contrario, une influence de l’environnement sur les processus précoces du développement n’a pas, jusqu’à présent, été détectée.
APA, Harvard, Vancouver, ISO, and other styles
2

Schroeder, D. F., and J. D. McGhee. "Anterior-posterior patterning within the Caenorhabditis elegans endoderm." Development 125, no. 24 (December 15, 1998): 4877–87. http://dx.doi.org/10.1242/dev.125.24.4877.

Full text
Abstract:
The endoderm of higher organisms is extensively patterned along the anterior/posterior axis. Although the endoderm (gut or E lineage) of the nematode Caenorhabditis elegans appears to be a simple uniform tube, cells in the anterior gut show several molecular and anatomical differences from cells in the posterior gut. In particular, the gut esterase ges-1 gene, which is normally expressed in all cells of the endoderm, is expressed only in the anterior-most gut cells when certain sequences in the ges-1 promoter are deleted. Using such a deleted ges-1 transgene as a biochemical marker of differentiation, we have investigated the basis of anterior-posterior gut patterning in C. elegans. Although homeotic genes are involved in endoderm patterning in other organisms, we show that anterior gut markers are expressed normally in C. elegans embryos lacking genes of the homeotic cluster. Although signalling from the mesoderm is involved in endoderm patterning in other organisms, we show that ablation of all non-gut blastomeres from the C. elegans embryo does not affect anterior gut marker expression; furthermore, ectopic guts produced by genetic transformation express anterior gut markers generally in the expected location and in the expected number of cells. We conclude that anterior gut fate requires no specific cell-cell contact but rather is produced autonomously within the E lineage. Cytochalasin D blocking experiments fully support this conclusion. Finally, the HMG protein POP-1, a downstream component of the Wnt signalling pathway, has recently been shown to be important in many anterior/posterior fate decisions during C. elegans embryogenesis (Lin, R., Hill, R. J. and Priess, J. R. (1998) Cell 92, 229–239). When RNA-mediated interference is used to eliminate pop-1 function from the embryo, gut is still produced but anterior gut marker expression is abolished. We suggest that the C. elegans endoderm is patterned by elements of the Wnt/pop-1 signalling pathway acting autonomously within the E lineage.
APA, Harvard, Vancouver, ISO, and other styles
3

Nance, Jeremy, and James R. Priess. "Cell polarity and gastrulation inC. elegans." Development 129, no. 2 (January 15, 2002): 387–97. http://dx.doi.org/10.1242/dev.129.2.387.

Full text
Abstract:
Gastrulation in C. elegans embryos involves formation of a blastocoel and the ingression of surface cells into the blastocoel. Mutations in the par-3 gene cause abnormal separations between embryonic cells, suggesting that the PAR-3 protein has a role in blastocoel formation. In normal development, PAR proteins localize to either the apical or basal surfaces of cells prior to blastocoel formation; we demonstrate that this localization is determined by cell contacts. Cells that ingress into the blastocoel undergo an apical flattening associated with an apical concentration of non-muscle myosin. We provide evidence that ingression times are determined by genes that control cell fate, though interactions with neighboring cells can prevent ingression.
APA, Harvard, Vancouver, ISO, and other styles
4

Coomans, August, Myriam Claeys, Gaëtan Borgonie, and Christopher Link. "Lysosomal and pseudocoelom routing protects Caenorhabditis elegans from ricin toxicity." Nematology 5, no. 3 (2003): 339–50. http://dx.doi.org/10.1163/156854103769224331.

Full text
Abstract:
AbstractThe resistance of the nematode Caenorhabditis elegans towards the highly potent toxin ricin has been studied. Incubation of C. elegans in ricin did not affect life span or progeny production. However, micro-injection of the ricin A-chain into the distal, syncitial gonad caused degeneration and sterility in test specimens, confirming that C. elegans ribosomes are sensitive. Using transmission electron microscopy, it was observed that ricin is effectively internalised into the intestinal cells. When pre-labelled with gold, the toxin reached only the lysosomes. When native toxin was used, the toxin was either routed to the lysosomes or underwent transcytosis to the pseudocoelomatic cavity and incorporation into embryos. None of the ricin reached either the trans Golgi network or the Golgi apparatus, considered essential for toxicity. The observed oral non-toxicity is therefore due to alternate sorting of the toxin, a mechanism not previously observed. The data indicate that, although ricin can opportunistically bind to, and be internalised by, cell surface receptors, these receptors are not sufficient to elicit toxicity.
APA, Harvard, Vancouver, ISO, and other styles
5

Labouesse, M., E. Hartwieg, and H. R. Horvitz. "The Caenorhabditis elegans LIN-26 protein is required to specify and/or maintain all non-neuronal ectodermal cell fates." Development 122, no. 9 (September 1, 1996): 2579–88. http://dx.doi.org/10.1242/dev.122.9.2579.

Full text
Abstract:
The C. elegans gene lin-26, which encodes a presumptive zinc-finger transcription factor, is required for hypodermal cells to acquire their proper fates. Here we show that lin-26 is expressed not only in all hypodermal cells but also in all glial-like cells. During asymmetric cell divisions that generate a neuronal cell and a non-neuronal cell, LIN-26 protein is symmetrically segregated and then lost from the neuronal cell. Expression in glial-like cells (socket and sheath cells) is biologically important, as some of these neuronal support cells die or seem sometimes to be transformed to neuron-like cells in embryos homozygous for strong loss-of-function mutations. In addition, most of these glial-like cells are structurally and functionally defective in animals carrying the weak loss-of-function mutation lin-26(n156). lin-26 mutant phenotypes and expression patterns together suggest that lin-26 is required to specify and/or maintain the fates not only of hypodermal cells but also of all other non-neuronal ectodermal cells in C. elegans. We speculate that lin-26 acts by repressing the expression of neuronal-specific genes in non-neuronal cells.
APA, Harvard, Vancouver, ISO, and other styles
6

Turner, Ashley N., Jessica M. Hoffman, Mickie L. Powell, Melissa J. Sammy, Douglas R. Moellering, Tim R. Nagy, Steven N. Austad, and Daniel L. Smith. "ASSESSMENT OF A MICROPLATE SYSTEM FOR MEASURING INDIVIDUAL REAL-TIME RESPIRATION IN SMALL MODEL ORGANISMS OF AGING." Innovation in Aging 3, Supplement_1 (November 2019): S918—S919. http://dx.doi.org/10.1093/geroni/igz038.3347.

Full text
Abstract:
Abstract The ability to measure oxygen consumption rates of a living organism in real-time provides an indirect method of monitoring dynamic changes in metabolism reflecting organismal level mitochondrial function. In this study, we assessed the Loligo Systems microplate system for measuring individual respiration in small organisms. This included adult nematodes (Caenorhabditis elegans, N2), zebrafish embryos (Danio rerio, AB), and adult fruit flies (Drosophila melanogaster, w1118). Organisms were placed inside 80 µL glass chambers on a 24-well microplate atop a 24-channel optical fluorescence oxygen reading device. Adult nematodes and zebrafish embryos were in liquid culture, M9 buffer and egg water respectively, and the adult flies were in room air. The microplate and reader were placed inside an incubator for temperature control. A silicone gasket with a thin liner was used to seal the chambers. Reference standard oxygen consumption (respiration) of single and multiple adult nematodes (n=1–4 animals/well), zebrafish embryos (n=1–4 animals/well), and adult flies (n=1–2 animals/well) in the microplate system were achieved. Significant differences across numbers of animals/well and by sex were observed. Validation experiments of the oxygen consumption rates measured in C. elegans in parallel with Seahorse extracellular flux (XF) experiments are underway. The Loligo Systems microplate system offers a non-invasive, non-destructive method to measure real-time respiration in smaller organisms. These data provide preliminary evidence for utility of the system for a variety of biomedical applications that relate to organismal and mitochondrial function/dysfunction, including research in the basic biology of aging in these highly-utilized, pre-clinical, genetic model organisms.
APA, Harvard, Vancouver, ISO, and other styles
7

Das, P., L. L. Maduzia, H. Wang, A. L. Finelli, S. H. Cho, M. M. Smith, and R. W. Padgett. "The Drosophila gene Medea demonstrates the requirement for different classes of Smads in dpp signaling." Development 125, no. 8 (April 15, 1998): 1519–28. http://dx.doi.org/10.1242/dev.125.8.1519.

Full text
Abstract:
Signals from transforming growth factor-beta (TGF-beta) ligands are transmitted within the cell by members of the Smad family, which can be grouped into three classes based on sequence similarities. Our previous identification of both class I and II Smads functioning in a single pathway in C. elegans, raised the issue of whether the requirement for Smads derived from different classes is a general feature of TGF-beta signaling. We report here the identification of a new Drosophila class II Smad, Medea, a close homolog of the human tumor-suppressor gene DPC4. Embryos from germline clones of both Medea and Mad (a class I Smad) are ventralized, as are embryos null for the TGF-beta-like ligand decapentaplegic (dpp). Loss of Medea also blocks dpp signaling during later development, suggesting that Medea, like Mad, is universally required for dpp signaling. Furthermore, we show that the necessity for these two closely related, non-redundant Smads, is due to their different signaling properties - upon activation of the Dpp pathway, Mad is required to actively translocate Medea into the nucleus. These results provide a paradigm for, and distinguish between, the requirement for class I and II Smads in Dpp/BMP signaling.
APA, Harvard, Vancouver, ISO, and other styles
8

Middelkoop, Teije C., Júlia Garcia-Baucells, Porfirio Quintero-Cadena, Lokesh G. Pimpale, Shahrzad Yazdi, Paul W. Sternberg, Peter Gross, and Stephan W. Grill. "CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left–right symmetry breaking." Proceedings of the National Academy of Sciences 118, no. 20 (May 10, 2021): e2021814118. http://dx.doi.org/10.1073/pnas.2021814118.

Full text
Abstract:
Proper left–right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left–right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left–right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin–dependent manner. Altogether, we conclude that CYK-1/Formin–dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left–right symmetry breaking in the nematode worm.
APA, Harvard, Vancouver, ISO, and other styles
9

Zambrano, Nicola, Marida Bimonte, Salvatore Arbucci, Davide Gianni, Tommaso Russo, and Paolo Bazzicalupo. "feh-1 and apl-1, the Caenorhabditis elegansorthologues of mammalian Fe65 and β-amyloid precursor protein genes, are involved in the same pathway that controls nematode pharyngeal pumping." Journal of Cell Science 115, no. 7 (April 1, 2002): 1411–22. http://dx.doi.org/10.1242/jcs.115.7.1411.

Full text
Abstract:
The multigenic family of mammalian Fe65s encodes three highly similar proteins with the same modular organisation: a WW domain and two phosphotyrosine-binding domains. The PTB2 domain of these proteins binds to the cytosolic domains of the Alzheimer's β-amyloid precursor protein APP and related proteins APLP1 and APLP2, generating a highly redundant system that is hard to dissect by reverse genetics. By searching potential Fe65-like genes in the nematode Caenorhabditis elegans, we identified a single gene, feh-1 (Fe65 homolog-1), encoding a protein with a high sequence similarity to mammalian Fe65s. FEH-1 is also functionally related to mammalian orthologues;in fact its PTB2 domain binds to APL-1, the product of the C. elegansorthologue of APP. Staining with specific antibodies show that the neuromuscular structures of the pharynx are the sites in which FEH-1 is present at highest levels. Expression studies with reporters indicate that the feh-1 gene is also expressed by a subset of the worm neurons. We generated and isolated a deletion allele of feh-1, and the corresponding homozygous mutants arrest as late embryos or as L1 larvae,demonstrating for the first time an essential role for a Fe65-like gene in vivo. The pharynx of homozygous larvae does not contract and the worms cannot feed. Analysis of pharyngeal pumping in heterozygous worms and in feh-1 RNA-interfered worms indicates that dosage of feh-1function affects the rate of pharyngeal contraction in C. elegans. Interference with apl-1 double-stranded RNA showed a similar effect on pharyngeal pumping, suggesting that FEH-1 and APL-1 are involved in the same pathway. The non-redundant system of the nematode will prove useful for studying the basic biology of the Fe65-APP interaction and the molecular events regulated by this evolutionarily conserved system of interacting proteins.
APA, Harvard, Vancouver, ISO, and other styles
10

Ferretti, Luca, Andrea Krämer-Eis, and Philipp H. Schiffer. "Conserved Patterns in Developmental Processes and Phases, Rather than Genes, Unite the Highly Divergent Bilateria." Life 10, no. 9 (September 6, 2020): 182. http://dx.doi.org/10.3390/life10090182.

Full text
Abstract:
Bilateria are the predominant clade of animals on Earth. Despite having evolved a wide variety of body plans and developmental modes, they are characterized by common morphological traits. By default, researchers have tried to link clade-specific genes to these traits, thus distinguishing bilaterians from non-bilaterians, by their gene content. Here we argue that it is rather biological processes that unite Bilateria and set them apart from their non-bilaterian sisters, with a less complex body morphology. To test this hypothesis, we compared proteomes of bilaterian and non-bilaterian species in an elaborate computational pipeline, aiming to search for a set of bilaterian-specific genes. Despite the limited confidence in their bilaterian specificity, we nevertheless detected Bilateria-specific functional and developmental patterns in the sub-set of genes conserved in distantly related Bilateria. Using a novel multi-species GO-enrichment method, we determined the functional repertoire of genes that are widely conserved among Bilateria. Analyzing expression profiles in three very distantly related model species—D. melanogaster, D. rerio and C. elegans—we find characteristic peaks at comparable stages of development and a delayed onset of expression in embryos. In particular, the expression of the conserved genes appears to peak at the phylotypic stage of different bilaterian phyla. In summary, our study illustrate how development connects distantly related Bilateria after millions of years of divergence, pointing to processes potentially separating them from non-bilaterians. We argue that evolutionary biologists should return from a purely gene-centric view of evolution and place more focus on analyzing and defining conserved developmental processes and periods.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Non-C. elegans embryos"

1

Samandar, eweis Dureen. "Asymmetric division in single cell nematode embryos outside the Caenorhabditis genus." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS063.

Full text
Abstract:
La division cellulaire asymétrique est un processus essentiel du développement. Ce processus ainsi que sa régulation ont fait l’objet de nombreuses études chez l’embryon de Caenorhabditis elegans. La division asymétrique de l'embryon unicellulaire est un processus conservé à travers les espèces de nématodes, cependant les caractéristiques cellulaires menant à la division sont étonnamment variables. Au cours de mon doctorat, j'ai voulu étudier ces différences en utilisant deux embryons non-C. elegans : Diploscapter pachys et Pristionchus pacificus. D. pachys est le parent parthénogénétique le plus proche de C. elegans. La polarité étant induite par le sperme chez C. elegans, on ne peut expliquer ce qui brise la symétrie chez D. pachys. Mes résultats montrent que le noyau occupe le plus souvent l’hémisphère de D. pachys qui deviendra le pole postérieur. Dans les embryons où il est astreint à un pôle par centrifugation, le noyau fini par revenir à son pôle préférentiel. Même si l’embryon est polarisé, l’agitation corticale et le cytosquelette d’actine semblent identiques aux deux pôles. D’autre part, la position du fuseau méiotique est corrélée avec la future cellule postérieure. Dans certains ovocytes, on observe des structures de microtubules émanant du fuseau méiotique combiné à un faible enrichissement en actine au future pôle postérieur. Finalement, mon principal projet de thèse montre que la polarité de D. pachys est atteinte durant la méiose, au cours de laquelle le fuseau méiotique pourrait jouer un rôle par un mécanisme présent mais inhibé chez C. elegans. Chez P. pacificus, la transgénèse biolistique a été récemment utilisée avec succès. Toutefois, par manque d’un marqueur de sélection fiable, il était illusoire de poursuivre cette approche. En conclusion, les résultats de ma thèse contribuent à une meilleure compréhension de l’embryogénèse hors C. elegans. Ils soulignent l’importance de ces espèces dans l’optique d’études comparatives
Asymmetric cell division is an essential process of development. The process and its regulation have been studied extensively in the Caenorhabditis elegans embryo. Asymmetric division of the single-cell embryo is a conserved process in nematode species, however, the cellular features leading up to division are surprisingly variable. During my PhD, I aimed to study these differences by using two non-C. elegans embryos: Diploscapter pachys and Pristionchus pacificus. D. pachys is the closest parthenogenetic relative to C. elegans. Since the polarity cue in C. elegans is brought by the sperm, how polarity is triggered in D. pachys remains unknown. My results show that the nucleus inhabits principally the hemisphere of the D. pachys embryo that will become the posterior pole. Moreover, in embryos where the nucleus is forced to one pole by centrifugation, it returns to its preferred pole. Although the embryo is polarized, cortical ruffling and actin cytoskeleton at both poles appear identical. Interestingly, the location of the meiotic spindle also correlates with the future posterior cell. In some oocytes, a slight actin enrichment along with unusual microtubule structures emanating from the meiotic spindle are observed at the future posterior pole. Overall, my main PhD project shows that polarity of the D. pachys embryo is attained during meiosis wherein the meiotic spindle could potentially be playing a role by a mechanism that may be present but suppressed in C. elegans. For P. pacificus, biolistic transgenesis has been shown recently successful. However, due to a lack of a stringent selection marker, the continuation of this project was unfeasible during my PhD. Altogether, the results of my PhD add to the understanding of non-C. elegans early embryogenesis and emphasizes on the importance of using these species for comparative studies
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Non-C. elegans embryos"

1

Schnabel, Ralf. "Microscopy." In C.elegans, 119–42. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780199637393.003.0007.

Full text
Abstract:
Abstract This chapter is designed to help you to analyse the phenotype of your favourite worm or embryo by looking through a microscope. The worm is perfectly suited to analysis by light microscopy. The dimensions of the embryo (about 55 µm) or the adult (1 mm) are just in the right range, such that the whole embryo or significant parts of the body of larvae and adults can be viewed with the highest numerical aperture and therefore with the best achievable resolution. Thus, subcellular details can be seen without losing sight of the whole animal. Although a wealth of very helpful, molecular markers of cell fate are available (e.g. antibodies, transgenic lines with green fluorescent protein (GFP) or [3 galactosidase labelled proteins, or specific probes for RNA in situ), differentiated cells show very characteristic features when viewed directly through a light microscope fitted with Nomarski (DIC) optics, so that determining which tissue or organ a cell belongs to (e.g. pharynx, gut, hypodermis, nervous system, or body wall muscle) is quite easy. The use of 4D microscopy, which allows the development of whole embryos to be documented, adds a new level to the analysis of cells since the ‘behaviour ‘ of cells can also be followed. It is an interesting question whether the expression of a single molecular marker really defines the fate of a cell unambiguously. However, if a cell looks like, migrates, and intercalates like a hypodermal cell it is very likely a hypodermal cell. Many investigators have now become interested in C. elegans because the function of their favourite molecule can be readily analysed in this nematode. It is therefore the general aim of this chapter to introduce molecular biologists to the basics of microscopy. To determine the function of the gene, at least its biological function as opposed to its ‘chemical ‘ function, one has to look through a microscope. Although this is mainly a book about methods, concepts are also very important methods and therefore a short conceptual discussion about what is required to determine the function of the gene, that is characterization of the ‘phenotype ‘ of the organism lacking a gene function, is included in the section discussing 4D microscopy.
APA, Harvard, Vancouver, ISO, and other styles
2

Burggren, Warren W. "Complexity Change during Physiological Development." In Comparative Developmental Physiology, 174–90. Oxford University PressNew York, NY, 2006. http://dx.doi.org/10.1093/oso/9780195168594.003.0012.

Full text
Abstract:
Abstract At the supramolecular level, at least, most animals start out “relatively simply”—a haploid egg is fertilized by a haploid sperm, resulting in a single diploid cell. While the rich heritage of that animal’s lineage is contained within this cell’s genetic template, the fertilized cell itself is simple in structure. From these humble beginnings arise the enormously complex adult forms containing several hundreds of cells of numerous types in some metazoans (e.g., C. elegans) to the hundreds of trillions of cells in large endothermic vertebrates. More impressive than sheer proliferation of cell number during development, however, is the increase in organismal complexity that occurs as the fertilized cell repeatedly divides to form differentiated cell types that move on to form tissues, then organs, and finally organ systems. Indeed, the combined wonders and travails of this developmental journey would seem to be reflected in the recurring theme for book titles on the subject—From Gene to Animal (De Pomerai 1985), From Egg to Embryo (Slack 1991), and From Conception to Birth (Tsiaras and Werth 2002). As is evident from the proliferation of not only scholarly works, but also coffee table and even children’s literature, there is clear and longstanding interest in the developmental journey of animals— where it starts, where it finishes, and the steps in between—as well as an appreciation for the increases in complexity that occur along this journey.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography