To see the other types of publications on this topic, follow the link: Non-autonomous dynamical systems.

Journal articles on the topic 'Non-autonomous dynamical systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Non-autonomous dynamical systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

N. Carvalho, Alexandre, José A. Langa, and James C. Robinson. "Non-autonomous dynamical systems." Discrete & Continuous Dynamical Systems - B 20, no. 3 (2015): 703–47. http://dx.doi.org/10.3934/dcdsb.2015.20.703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anzaldo-Meneses, A. "On non-autonomous dynamical systems." Journal of Mathematical Physics 56, no. 4 (April 2015): 042702. http://dx.doi.org/10.1063/1.4916893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cavro, Jakub. "Recurrence in non-autonomous dynamical systems." Journal of Difference Equations and Applications 25, no. 9-10 (August 9, 2019): 1404–11. http://dx.doi.org/10.1080/10236198.2019.1651849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Momeni, Davood, Phongpichit Channuie, and Mudhahir Al Ajmi. "Mapping of non-autonomous dynamical systems to autonomous ones." International Journal of Geometric Methods in Modern Physics 16, no. 06 (June 2019): 1950089. http://dx.doi.org/10.1142/s0219887819500890.

Full text
Abstract:
Using a proper choice of the dynamical variables, we show that a non-autonomous dynamical system transforming to an autonomous dynamical system with a certain coordinate transformations can be obtained by solving a general nonlinear first-order partial differential equations. We examine some special cases and provide particular physical examples. Our framework constitutes general machineries in investigating other non-autonomous dynamical systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Cheban, David. "Sell’s conjecture for non-autonomous dynamical systems." Nonlinear Analysis: Theory, Methods & Applications 75, no. 7 (May 2012): 3393–406. http://dx.doi.org/10.1016/j.na.2012.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leon, Manuel de, and Paulo R. Rodrigues. "Dynamical connections and non-autonomous lagrangian systems." Annales de la faculté des sciences de Toulouse Mathématiques 9, no. 2 (1988): 171–81. http://dx.doi.org/10.5802/afst.655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Qiuling, Yuming Shi, and Lijuan Zhang. "Sensitivity of non-autonomous discrete dynamical systems." Applied Mathematics Letters 39 (January 2015): 31–34. http://dx.doi.org/10.1016/j.aml.2014.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schechter, Martin. "Periodic non-autonomous second-order dynamical systems." Journal of Differential Equations 223, no. 2 (April 2006): 290–302. http://dx.doi.org/10.1016/j.jde.2005.02.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shao, Hua, Hao Zhu, and Guanrong Chen. "On fuzzifications of non-autonomous dynamical systems." Topology and its Applications 297 (June 2021): 107704. http://dx.doi.org/10.1016/j.topol.2021.107704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Xiaopeng, and Jinqiao Duan. "State space decomposition for non-autonomous dynamical systems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 141, no. 5 (September 26, 2011): 957–74. http://dx.doi.org/10.1017/s0308210510000661.

Full text
Abstract:
The decomposition of state spaces into dynamically different components is helpful for understanding dynamics of complex systems. A Conley-type decomposition theorem is proved for non-autonomous dynamical systems defined on a non-compact but separable state space. Specifically, the state space can be decomposed into a chain-recurrent part and a gradient-like part. This result applies to both non-autonomous ordinary differential equations on a Euclidean space (which is only locally compact), and to non-autonomous partial differential equations on an infinite-dimensional function space (which is not even locally compact). This decomposition result is demonstrated by discussing a few concrete examples, such as the Lorenz system and the Navier–Stokes system, under time-dependent forcing.
APA, Harvard, Vancouver, ISO, and other styles
11

Ding, Xian-Feng, Tian-Xiu Lu, and Jian-Jun Wang. "Sensitivity of non-autonomous discrete dynamical systems revisited." Journal of Nonlinear Sciences and Applications 10, no. 10 (October 19, 2017): 5239–44. http://dx.doi.org/10.22436/jnsa.010.10.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lan, Yaoyao, and Alfred Peris. "Weak stability of non-autonomous discrete dynamical systems." Topology and its Applications 250 (December 2018): 53–60. http://dx.doi.org/10.1016/j.topol.2018.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Robinson, James C., and Grzegorz Łukaszewicz. "Invariant measures for non-autonomous dissipative dynamical systems." Discrete and Continuous Dynamical Systems 34, no. 10 (April 2014): 4211–22. http://dx.doi.org/10.3934/dcds.2014.34.4211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cheban, David. "Markus–Yamabe conjecture for non-autonomous dynamical systems." Nonlinear Analysis: Theory, Methods & Applications 95 (January 2014): 202–18. http://dx.doi.org/10.1016/j.na.2013.09.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Schechter, Martin. "Ground state solutions for non-autonomous dynamical systems." Journal of Mathematical Physics 55, no. 10 (October 2014): 101504. http://dx.doi.org/10.1063/1.4897443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Blanes, S., and F. Casas. "Splitting methods for non-autonomous separable dynamical systems." Journal of Physics A: Mathematical and General 39, no. 19 (April 24, 2006): 5405–23. http://dx.doi.org/10.1088/0305-4470/39/19/s05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kloeden, Peter E., and C. Pötzsche. "Non-autonomous difference equations and discrete dynamical systems." Journal of Difference Equations and Applications 17, no. 2 (February 2011): 129–30. http://dx.doi.org/10.1080/10236198.2010.549001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sacker, Robert J. "Geometric theory of discrete non-autonomous dynamical systems." Journal of Difference Equations and Applications 20, no. 3 (December 5, 2013): 506–10. http://dx.doi.org/10.1080/10236198.2013.864469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ju, Xuewei, Desheng Li, Chunqiu Li, and Ailing Qi. "Approximate Forward Attractors of Non-Autonomous Dynamical Systems." Chinese Annals of Mathematics, Series B 40, no. 4 (June 14, 2019): 541–54. http://dx.doi.org/10.1007/s11401-019-0150-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Cui, Hongyong, and José A. Langa. "Uniform attractors for non-autonomous random dynamical systems." Journal of Differential Equations 263, no. 2 (July 2017): 1225–68. http://dx.doi.org/10.1016/j.jde.2017.03.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Navascués, M. A. "New equilibria of non-autonomous discrete dynamical systems." Chaos, Solitons & Fractals 152 (November 2021): 111413. http://dx.doi.org/10.1016/j.chaos.2021.111413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mao, An-Min, and Miao-Miao Yang. "Periodic Solutions to Non-Autonomous Second-Order Dynamical Systems." Advances in Pure Mathematics 01, no. 03 (2011): 90–94. http://dx.doi.org/10.4236/apm.2011.13020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zgurovsky, Michael, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, and Olha Khomenko. "Uniform global attractors for non-autonomous dissipative dynamical systems." Discrete & Continuous Dynamical Systems - B 22, no. 5 (2017): 2053–65. http://dx.doi.org/10.3934/dcdsb.2017120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Caraballo, T., G. Łukaszewicz, and J. Real. "Pullback attractors for asymptotically compact non-autonomous dynamical systems." Nonlinear Analysis: Theory, Methods & Applications 64, no. 3 (February 2006): 484–98. http://dx.doi.org/10.1016/j.na.2005.03.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

CARVALHO, ALEXANDRE N., JOSÉ A. LANGA, and JAMES C. ROBINSON. "Lower semicontinuity of attractors for non-autonomous dynamical systems." Ergodic Theory and Dynamical Systems 29, no. 6 (February 3, 2009): 1765–80. http://dx.doi.org/10.1017/s0143385708000850.

Full text
Abstract:
AbstractThis paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions.
APA, Harvard, Vancouver, ISO, and other styles
26

Rezaali, E., F. H. Ghane, and H. Parham. "Ergodic shadowing of non-autonomous discrete-time dynamical systems." International Journal of Dynamical Systems and Differential Equations 9, no. 2 (2019): 203. http://dx.doi.org/10.1504/ijdsde.2019.10022227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Parham, H., F. H. Ghane, and E. Rezaali. "Ergodic shadowing of non-autonomous discrete-time dynamical systems." International Journal of Dynamical Systems and Differential Equations 9, no. 2 (2019): 203. http://dx.doi.org/10.1504/ijdsde.2019.100572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Johnson, Russell, and Víctor Muñoz-Villarragut. "Some questions concerning attractors for non-autonomous dynamical systems." Nonlinear Analysis: Theory, Methods & Applications 71, no. 12 (December 2009): e1858-e1868. http://dx.doi.org/10.1016/j.na.2009.02.088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bonotto, Everaldo M., Matheus C. Bortolan, Tomás Caraballo, and Rodolfo Collegari. "Impulsive non-autonomous dynamical systems and impulsive cocycle attractors." Mathematical Methods in the Applied Sciences 40, no. 4 (June 28, 2016): 1095–113. http://dx.doi.org/10.1002/mma.4038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Góra, Paweł, Abraham Boyarsky, and Christopher Keefe. "Absolutely continuous invariant measures for non-autonomous dynamical systems." Journal of Mathematical Analysis and Applications 470, no. 1 (February 2019): 159–68. http://dx.doi.org/10.1016/j.jmaa.2018.09.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Prieto-Martínez, Pedro Daniel, and Narciso Román-Roy. "Unified formalism for higher order non-autonomous dynamical systems." Journal of Mathematical Physics 53, no. 3 (March 2012): 032901. http://dx.doi.org/10.1063/1.3692326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cui, Hongyong, and Peter E. Kloeden. "Invariant forward attractors of non-autonomous random dynamical systems." Journal of Differential Equations 265, no. 12 (December 2018): 6166–86. http://dx.doi.org/10.1016/j.jde.2018.07.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Vasisht, Radhika, and Ruchi Das. "Induced dynamics in hyperspaces of non-autonomous discrete systems." Filomat 33, no. 7 (2019): 1911–20. http://dx.doi.org/10.2298/fil1907911v.

Full text
Abstract:
In this paper, the interrelations of some dynamical properties of a non-autonomous dynamical system (X, f1, ?) and its induced non-autonomous dynamical system (K(X), f1, ?) are studied, where K(X) is the hyperspace of all non-empty compact subsets of X, endowed with Vietoris topology. Various stronger forms of sensitivity and transitivity are considered. Some examples of non-autonomous systems are provided to support the results. A relation between shadowing property of the non-autonomous system (X, f1, ?) and its induced system (K(X), f1, ?) is studied.
APA, Harvard, Vancouver, ISO, and other styles
34

Balibrea, Francisco. "On problems of Topological Dynamics in non-autonomous discrete systems." Applied Mathematics and Nonlinear Sciences 1, no. 2 (September 28, 2016): 391–404. http://dx.doi.org/10.21042/amns.2016.2.00034.

Full text
Abstract:
AbstractMost of problems in Topological Dynamics in the theory of general autonomous discrete dynamical systems have been addressed in the non-autonomous setting. In this paper we will review some of them, giving references and stating open questions.
APA, Harvard, Vancouver, ISO, and other styles
35

Efendiev, M., S. Zelik, and A. Miranville. "Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 135, no. 4 (August 2005): 703–30. http://dx.doi.org/10.1017/s030821050000408x.

Full text
Abstract:
We suggest in this paper a new explicit algorithm allowing us to construct exponential attractors which are uniformly Hölder continuous with respect to the variation of the dynamical system in some natural large class. Moreover, we extend this construction to non-autonomous dynamical systems (dynamical processes) treating in that case the exponential attractor as a uniformly exponentially attracting, finite-dimensional and time-dependent set in the phase space. In particular, this result shows that, for a wide class of non-autonomous equations of mathematical physics, the limit dynamics remains finite dimensional no matter how complicated the dependence of the external forces on time is. We illustrate the main results of this paper on the model example of a non-autonomous reaction–diffusion system in a bounded domain.
APA, Harvard, Vancouver, ISO, and other styles
36

Liao, Xinyuan, Caidi Zhao, and Shengfan Zhou. "Compact uniform attractors for dissipative non-autonomous lattice dynamical systems." Communications on Pure & Applied Analysis 6, no. 4 (2007): 1087–111. http://dx.doi.org/10.3934/cpaa.2007.6.1087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kawan, Christoph, and Yuri Latushkin. "Some results on the entropy of non-autonomous dynamical systems." Dynamical Systems 31, no. 3 (November 26, 2015): 251–79. http://dx.doi.org/10.1080/14689367.2015.1111299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Krabs, Werner. "Stability and Controllability in Non-autonomous Time-discrete Dynamical Systems." Journal of Difference Equations and Applications 8, no. 12 (January 2002): 1107–18. http://dx.doi.org/10.1080/1023619021000053971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shao, Hua, Guanrong Chen, and Yuming Shi. "Some criteria of chaos in non-autonomous discrete dynamical systems." Journal of Difference Equations and Applications 26, no. 3 (February 7, 2020): 295–308. http://dx.doi.org/10.1080/10236198.2020.1725496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bonotto, E. M., M. C. Bortolan, T. Caraballo, and R. Collegari. "Attractors for impulsive non-autonomous dynamical systems and their relations." Journal of Differential Equations 262, no. 6 (March 2017): 3524–50. http://dx.doi.org/10.1016/j.jde.2016.11.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chu, Jifeng, Pedro J. Torres, and Meirong Zhang. "Periodic solutions of second order non-autonomous singular dynamical systems." Journal of Differential Equations 239, no. 1 (August 2007): 196–212. http://dx.doi.org/10.1016/j.jde.2007.05.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

You, Bo. "Pullback exponential attractors for some non‐autonomous dissipative dynamical systems." Mathematical Methods in the Applied Sciences 44, no. 13 (April 30, 2021): 10361–86. http://dx.doi.org/10.1002/mma.7413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Imran, Mohamedsh, and Ihsan Jabbar Kadhim. "Non-autonomous invariant sets and attractors: Random dynamical system." Al-Qadisiyah Journal Of Pure Science 25, no. 4 (August 25, 2020): 17–23. http://dx.doi.org/10.29350/qjps.2020.25.4.1166.

Full text
Abstract:
In this paper the concepts of pullback attractor ,pullback absorbing family in (deterministic) dynamical system are defined in (random) dynamical systems. Also some main result such as (existence) of pullback attractors ,upper semi-continuous of pullback attractors and uniform and global attractors are proved in random dynamical system .
APA, Harvard, Vancouver, ISO, and other styles
44

Astrelina, A. A. "The Baire Class of Topological Entropy of Non–Autonomous Dynamical Systems." Moscow University Mathematics Bulletin 73, no. 5 (September 2018): 203–6. http://dx.doi.org/10.3103/s0027132218050078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mayer, Volker, Bartlomiej Skorulski, and Mariusz Urbanski. "Regularity and irregularity of fiber dimensions of non-autonomous dynamical systems." Annales Academiae Scientiarum Fennicae Mathematica 38 (June 2013): 489–514. http://dx.doi.org/10.5186/aasfm.2013.3829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dellnitz, Michael, and Christian Horenkamp. "The efficient approximation of coherent pairs in non-autonomous dynamical systems." Discrete & Continuous Dynamical Systems - A 32, no. 9 (2012): 3029–42. http://dx.doi.org/10.3934/dcds.2012.32.3029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Bixiang. "Multivalued non-autonomous random dynamical systems for wave equations without uniqueness." Discrete & Continuous Dynamical Systems - B 22, no. 5 (2017): 2011–51. http://dx.doi.org/10.3934/dcdsb.2017119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Abdallah, Ahmed Y. "Uniform exponential attractors for first order non-autonomous lattice dynamical systems." Journal of Differential Equations 251, no. 6 (September 2011): 1489–504. http://dx.doi.org/10.1016/j.jde.2011.05.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Shao, Hua, Yuming Shi, and Hao Zhu. "Relationships among some chaotic properties of non-autonomous discrete dynamical systems." Journal of Difference Equations and Applications 24, no. 7 (April 3, 2018): 1055–64. http://dx.doi.org/10.1080/10236198.2018.1458101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Abdallah, Ahmed Y. "Uniform global attractors for first order non-autonomous lattice dynamical systems." Proceedings of the American Mathematical Society 138, no. 09 (September 1, 2010): 3219. http://dx.doi.org/10.1090/s0002-9939-10-10440-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography