To see the other types of publications on this topic, follow the link: Non-abelian vortices.

Journal articles on the topic 'Non-abelian vortices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Non-abelian vortices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lo, Hoi-Kwong, and John Preskill. "Non-Abelian vortices and non-Abelian statistics." Physical Review D 48, no. 10 (November 15, 1993): 4821–34. http://dx.doi.org/10.1103/physrevd.48.4821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Forgács, Péter, Árpád Lukács, and Fidel A. Schaposnik. "Twisted non-Abelian vortices." International Journal of Modern Physics A 31, no. 28n29 (October 19, 2016): 1645046. http://dx.doi.org/10.1142/s0217751x16450469.

Full text
Abstract:
Twisted non-Abelian flux-tube solutions are considered in the bosonic sector of a 4-dimensional [Formula: see text] super-symmetric gauge theory with U(2)[Formula: see text] symmetry, with two scalar doublets in the fundamental representation. Twist refers to a time-dependent matrix phase between the two doublets, and twisted strings have nonzero (global) charge, momentum, and in some cases even angular momentum per unit length. The planar cross section of a twisted string corresponds to a rotationally symmetric, charged non-Abelian vortex, satisfying 1st order Bogomolny-type equations and Gauss-type constraints. Quite unexpectedly some twisted strings lack cylindrical symmetry in [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
3

Collie, Benjamin. "Dyonic non-Abelian vortices." Journal of Physics A: Mathematical and Theoretical 42, no. 8 (February 2, 2009): 085404. http://dx.doi.org/10.1088/1751-8113/42/8/085404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eto, Minoru, Eiji Nakano, and Muneto Nitta. "Non-Abelian global vortices." Nuclear Physics B 821, no. 1-2 (November 2009): 129–50. http://dx.doi.org/10.1016/j.nuclphysb.2009.06.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

KONISHI, K. "NON-ABELIAN VORTICES: RESULTS IN NEW DIRECTIONS." International Journal of Modern Physics A 25, no. 02n03 (January 30, 2010): 236–46. http://dx.doi.org/10.1142/s0217751x10048561.

Full text
Abstract:
Two new results on non-Abelian vortices are illustrated. In the first part we discuss the construction of non-Abelian vortices in theories with general gauge groups. The second part is dedicated to the fractional vortices and lumps, which occur in a wide variety of Abelian and non-Abelian generalizations of the Higgs model.
APA, Harvard, Vancouver, ISO, and other styles
6

Lozano, G. S., D. Marqués, E. F. Moreno, and F. A. Schaposnik. "Non-Abelian Chern–Simons vortices." Physics Letters B 654, no. 1-2 (October 2007): 27–34. http://dx.doi.org/10.1016/j.physletb.2007.08.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KONISHI, KENICHI, and LEONARDO SPANU. "NON-ABELIAN VORTEX AND CONFINEMENT." International Journal of Modern Physics A 18, no. 02 (January 20, 2003): 249–69. http://dx.doi.org/10.1142/s0217751x03011492.

Full text
Abstract:
We discuss general properties and possible types of magnetic vortices in non-Abelian gauge theories (we consider here G = SU (N), SO (N), USp (2N)) in the Higgs phase. The sources of such vortices carry "fractional" quantum numbers such as Zn charge (for SU (N)), but also full non-Abelian charges of the dual gauge group. If such a model emerges as an effective dual magnetic theory of the fundamental (electric) theory, the non-Abelian vortices can provide for the mechanism of quark confinement in the latter.
APA, Harvard, Vancouver, ISO, and other styles
8

Lozano, Gustavo Sergio, Diego Marqués, and Fidel Arturo Schaposnik. "Non-abelian vortices on the torus." Journal of High Energy Physics 2007, no. 09 (September 24, 2007): 095. http://dx.doi.org/10.1088/1126-6708/2007/09/095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Auzzi, Roberto, Minoru Eto, and Walter Vinci. "Static interactions of non-Abelian vortices." Journal of High Energy Physics 2008, no. 02 (February 28, 2008): 100. http://dx.doi.org/10.1088/1126-6708/2008/02/100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Markov, V., A. Marshakov, and A. Yung. "Non-Abelian vortices in gauge theory." Nuclear Physics B 709, no. 1-2 (March 2005): 267–95. http://dx.doi.org/10.1016/j.nuclphysb.2004.12.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Alford, Mark, Katherine Benson, Sidney Coleman, John March-Russell, and Frank Wilczek. "Zero modes of non-abelian vortices." Nuclear Physics B 349, no. 2 (February 1991): 414–38. http://dx.doi.org/10.1016/0550-3213(91)90331-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yang, Yisong. "Vacuum decay of non-Abelian vortices." Mathematical Methods in the Applied Sciences 15, no. 2 (February 1992): 79–88. http://dx.doi.org/10.1002/mma.1670150203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nitta, Muneto. "Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices." Nuclear Physics B 899 (October 2015): 78–90. http://dx.doi.org/10.1016/j.nuclphysb.2015.07.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

de Vega, H. J., and F. A. Schaposnik. "Vortices and electrically charged vortices in non-Abelian gauge theories." Physical Review D 34, no. 10 (November 15, 1986): 3206–13. http://dx.doi.org/10.1103/physrevd.34.3206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Alford, M. G., Katherine Benson, Sidney Coleman, John March-Russell, and Frank Wilczek. "Interactions and excitations of non-Abelian vortices." Physical Review Letters 64, no. 14 (April 2, 1990): 1632–35. http://dx.doi.org/10.1103/physrevlett.64.1632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Alford, M. G., Katherine Benson, Sidney Coleman, John March-Russell, and Frank Wilczek. "Interactions and Excitations of Non-Abelian Vortices." Physical Review Letters 65, no. 5 (July 30, 1990): 668. http://dx.doi.org/10.1103/physrevlett.65.668.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Konishi, Kenichi. "Advent of Non-Abelian Vortices and Monopoles." Progress of Theoretical Physics Supplement 177 (2009): 83–98. http://dx.doi.org/10.1143/ptps.177.83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Itakura, Kazunori. "Majorana Fermions in Non-Abelian QCD Vortices." Progress of Theoretical Physics Supplement 186 (October 1, 2010): 549–55. http://dx.doi.org/10.1143/ptps.186.549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rink, Norman A. "Non-abelian vortices on CP1 and Grassmannians." Journal of Mathematical Physics 54, no. 4 (April 2013): 043503. http://dx.doi.org/10.1063/1.4798468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bolognesi, Stefano. "The holomorphic tension of non-Abelian vortices." Nuclear Physics B 719, no. 1-2 (July 2005): 67–76. http://dx.doi.org/10.1016/j.nuclphysb.2005.04.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ferretti, L., S. B. Gudnason, and K. Konishi. "Non-Abelian vortices and monopoles in theories." Nuclear Physics B 789, no. 1-2 (January 2008): 84–110. http://dx.doi.org/10.1016/j.nuclphysb.2007.07.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tarantello, Gabriella. "Non-abelian Vortices: Existence, Uniqueness and Asymptotics." Milan Journal of Mathematics 79, no. 1 (June 2011): 343–56. http://dx.doi.org/10.1007/s00032-011-0160-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Baptista, J. M. "Non-Abelian Vortices on Compact Riemann Surfaces." Communications in Mathematical Physics 291, no. 3 (May 19, 2009): 799–812. http://dx.doi.org/10.1007/s00220-009-0838-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ferretti, L. "Non-abelian vortices inN= 2 gauge theories." Journal of Physics: Conference Series 110, no. 10 (May 1, 2008): 102005. http://dx.doi.org/10.1088/1742-6596/110/10/102005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Manton, Nicholas S., and Norman A. Rink. "Geometry and energy of non-Abelian vortices." Journal of Mathematical Physics 52, no. 4 (April 2011): 043511. http://dx.doi.org/10.1063/1.3574357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Manías, M. V., C. M. Naón, F. A. Schaposnik, and M. Trobo. "Non-abelian charged vortices as cosmic strings." Physics Letters B 171, no. 2-3 (April 1986): 199–202. http://dx.doi.org/10.1016/0370-2693(86)91531-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

KONISHI, K. "NEW RESULTS ON NON-ABELIAN VORTICES — FURTHER INSIGHTS INTO MONOPOLE, VORTEX AND CONFINEMENT." International Journal of Modern Physics A 25, no. 27n28 (November 10, 2010): 5025–39. http://dx.doi.org/10.1142/s0217751x10050834.

Full text
Abstract:
We discuss some of the latest results concerning the non-Abelian vortices. The first concerns the construction of non-Abelian BPS vortices based on general gauge groups of the form G = G′×U(1). In particular detailed results about the vortex moduli space have been obtained for G′ = SO(N) or U Sp(2N). The second result is about the "fractional vortices", i.e., vortices of the minimum winding but having substructures in the tension (or flux) density in the transverse plane. Thirdly, we discuss briefly the monopole-vortex complex.
APA, Harvard, Vancouver, ISO, and other styles
28

DEY, B., C. N. KUMAR, and A. SEN. "CHAOS IN ABELIAN AND NON-ABELIAN HIGGS SYSTEMS." International Journal of Modern Physics A 08, no. 10 (April 20, 1993): 1755–72. http://dx.doi.org/10.1142/s0217751x93000722.

Full text
Abstract:
The nonintegrability and chaotic nature of the Yang-Mills Higgs systems are considered. We have studied the Abelian Higgs model and the SO(3) Georgi-Glashow model (non-Abelian Higgs model), which possess vortices and monopole solutions respectively. The Painlevé analysis of the corresponding time-dependent equations of motion shows that both systems are nonintegrable for all choices of the parameter values. The Poincare surface-of-section plot shows the presence of chaotic trajectories in the phase space at certain parameter values for both systems. The chaotic nature of the trajectories is also indicated by the computations of the Lyapunov exponents of the corresponding systems.
APA, Harvard, Vancouver, ISO, and other styles
29

Brekke, Lee, Steffett J. Collins, and Tom D. Imbo. "Non-abelian vortices on surfaces and their statistics." Nuclear Physics B 500, no. 1-3 (September 1997): 465–85. http://dx.doi.org/10.1016/s0550-3213(97)00409-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Eto, Minoru, Toshiaki Fujimori, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi, and Walter Vinci. "Constructing non-Abelian vortices with arbitrary gauge groups." Physics Letters B 669, no. 1 (October 2008): 98–101. http://dx.doi.org/10.1016/j.physletb.2008.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lin, Chang-Shou, and Yisong Yang. "Non-Abelian Multiple Vortices in Supersymmetric Field Theory." Communications in Mathematical Physics 304, no. 2 (April 2, 2011): 433–57. http://dx.doi.org/10.1007/s00220-011-1233-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cugliandolo, Leticia F., Gustavo Lozano, and Fidel A. Schaposnik. "A topological field theory for non-abelian vortices." Physics Letters B 234, no. 1-2 (January 1990): 52–56. http://dx.doi.org/10.1016/0370-2693(90)92000-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Baptista, J. M. "Non-Abelian Vortices, Hecke Modifications and Singular Monopoles." Letters in Mathematical Physics 92, no. 3 (April 28, 2010): 243–52. http://dx.doi.org/10.1007/s11005-010-0394-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kobayashi, Michikazu. "Physics of non-Abelian vortices in Bose-Einstein condensates." Journal of Physics: Conference Series 297 (May 1, 2011): 012013. http://dx.doi.org/10.1088/1742-6596/297/1/012013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ikemori, Hitoshi, Shinsaku Kitakado, Hideharu Otsu, and Toshiro Sato. "Non abelian vortices as instantons on noncommutative discrete space." Journal of High Energy Physics 2009, no. 02 (February 2, 2009): 004. http://dx.doi.org/10.1088/1126-6708/2009/02/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Auzzi, Roberto, Stefano Bolognesi, Jarah Evslin, and Kenichi Konishi. "Non-Abelian monopoles and the vortices that confine them." Nuclear Physics B 686, no. 1-2 (May 2004): 119–34. http://dx.doi.org/10.1016/j.nuclphysb.2004.03.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Han, Xiaosen, and Chang-Shou Lin. "Existence of non-Abelian vortices with product gauge groups." Nuclear Physics B 878 (January 2014): 117–49. http://dx.doi.org/10.1016/j.nuclphysb.2013.11.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Eto, Minoru, Muneto Nitta, and Norisuke Sakai. "Effective theory on non-Abelian vortices in six dimensions." Nuclear Physics B 701, no. 1-2 (November 2004): 247–72. http://dx.doi.org/10.1016/j.nuclphysb.2004.09.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Auzzi, Roberto, Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, and Walter Vinci. "On the stability of non-Abelian semi-local vortices." Nuclear Physics B 813, no. 3 (June 2009): 484–502. http://dx.doi.org/10.1016/j.nuclphysb.2008.12.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gudnason, Sven Bjarke. "Non-Abelian Chern–Simons vortices with generic gauge groups." Nuclear Physics B 821, no. 1-2 (November 2009): 151–69. http://dx.doi.org/10.1016/j.nuclphysb.2009.06.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gudnason, Sven Bjarke. "Fractional and semi-local non-Abelian Chern–Simons vortices." Nuclear Physics B 840, no. 1-2 (November 2010): 160–85. http://dx.doi.org/10.1016/j.nuclphysb.2010.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Alford, Mark G., Kai-Ming Lee, John March-Russell, and John Preskill. "Quantum field theory of non-abelian strings and vortices." Nuclear Physics B 384, no. 1-2 (October 1992): 251–317. http://dx.doi.org/10.1016/0550-3213(92)90468-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Popov, Alexander D. "Non-Abelian Vortices on Riemann Surfaces: an Integrable Case." Letters in Mathematical Physics 84, no. 2-3 (May 30, 2008): 139–48. http://dx.doi.org/10.1007/s11005-008-0243-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ivanov, D. A. "Non-Abelian Statistics of Half-Quantum Vortices inp-Wave Superconductors." Physical Review Letters 86, no. 2 (January 8, 2001): 268–71. http://dx.doi.org/10.1103/physrevlett.86.268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Guimarães, M. E. X., and L. A. J. London. "Non-Abelian, self-dual Chern-Simons vortices coupled to gravity." Physical Review D 52, no. 10 (November 15, 1995): 6057–64. http://dx.doi.org/10.1103/physrevd.52.6057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Manton, Nicholas S., and Norisuke Sakai. "Maximally non-abelian vortices from self-dual Yang–Mills fields." Physics Letters B 687, no. 4-5 (April 2010): 395–99. http://dx.doi.org/10.1016/j.physletb.2010.03.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Garaud, Julien, and Mikhail S. Volkov. "Superconducting non-Abelian vortices in Weinberg–Salam theory – electroweak thunderbolts." Nuclear Physics B 826, no. 1-2 (February 2010): 174–216. http://dx.doi.org/10.1016/j.nuclphysb.2009.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yasui, Shigehiro, Kazunori Itakura, and Muneto Nitta. "Dirac returns: Non-Abelian statistics of vortices with Dirac fermions." Nuclear Physics B 859, no. 2 (June 2012): 261–68. http://dx.doi.org/10.1016/j.nuclphysb.2012.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

ESCALONA, JOAQUIN, MANUEL TORRES, and ARMANDO ANTILLON. "STABILITY OF NON-TOPOLOGICAL CHERN-SIMONS VORTICES IN A ϕ2-MODEL." Modern Physics Letters A 08, no. 31 (October 10, 1993): 2955–62. http://dx.doi.org/10.1142/s0217732393003378.

Full text
Abstract:
We study the stability under small perturbations for the recently discovered self-dual non-topological vortices in a ϕ2 Abelian Chern-Simons (CS) theory. The solitons appear in the Bogomol'nyi limit of a model of scalar and gauge fields which includes both the CS term and an anomalous magnetic contribution. It is demonstrated here, that the vortices are stable or unstable according to whether the vector topological mass κ is less than or greater than the mass m of the scalar field. The interaction between vortices is determined as attractive for (m < κ) and repulsive for (m > κ).
APA, Harvard, Vancouver, ISO, and other styles
50

WU, CONGJUN, JIANGPING HU, and SHOU-CHENG ZHANG. "QUINTET PAIRING AND NON-ABELIAN VORTEX STRING IN SPIN-3/2 COLD ATOMIC SYSTEMS." International Journal of Modern Physics B 24, no. 03 (January 30, 2010): 311–22. http://dx.doi.org/10.1142/s0217979210054968.

Full text
Abstract:
We study the s-wave quintet Cooper pairing phase (S pair = 2) in spin-3/2 cold atomic systems and identify various novel features which do not appear in spin-1/2 pairing systems. A single quantum vortex is shown to be energetically less stable than a pair of half-quantum vortices. The half-quantum vortex exhibits the global analogue of the non-Abelian Alice string and SO(4) Cheshire charge in gauge theories. The non-Abelian half-quantum vortex loop enables topological generation of quantum entanglement.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography