Academic literature on the topic 'Nombres de Fibonacci'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nombres de Fibonacci.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nombres de Fibonacci"
FROUGNY, CHRISTIANE, and JACQUES SAKAROVITCH. "AUTOMATIC CONVERSION FROM FIBONACCI REPRESENTATION TO REPRESENTATION IN BASE φ, AND A GENERALIZATION." International Journal of Algebra and Computation 09, no. 03n04 (June 1999): 351–84. http://dx.doi.org/10.1142/s0218196799000230.
Full textBugeaud, Yann, Maurice Mignotte, and Samir Siksek. "Sur les nombres de Fibonacci de la forme." Comptes Rendus Mathematique 339, no. 5 (September 2004): 327–30. http://dx.doi.org/10.1016/j.crma.2004.06.007.
Full textBelbachir, Hacène, and Assia Fettouma Tebtoub. "Les nombres de Stirling associés avec succession d'ordre 2, nombres de Fibonacci–Stirling et unimodalité." Comptes Rendus Mathematique 353, no. 9 (September 2015): 767–71. http://dx.doi.org/10.1016/j.crma.2015.06.008.
Full textRIVOAL, TANGUY. "ON THE BITS COUNTING FUNCTION OF REAL NUMBERS." Journal of the Australian Mathematical Society 85, no. 1 (August 2008): 95–111. http://dx.doi.org/10.1017/s1446788708000591.
Full textLinton, Stephen, James Propp, Tom Roby, and Julian West. "Equivalence Relations of Permutations Generated by Constrained Transpositions." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AN,..., Proceedings (January 1, 2010). http://dx.doi.org/10.46298/dmtcs.2841.
Full textBattaglino, Daniela, Jean-Marc Fédou, Simone Rinaldi, and Samanta Socci. "The number of $k$-parallelogram polyominoes." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AS,..., Proceedings (January 1, 2013). http://dx.doi.org/10.46298/dmtcs.2370.
Full textDissertations / Theses on the topic "Nombres de Fibonacci"
Plet, Sébastien. "Mesures et densités des nombres premiers dans les suites récurrentes linéaires." Caen, 2006. http://www.theses.fr/2006CAEN2069.
Full textWe give a general construction of probability measures on [0, 1] linked with representations of real numbers in a variable basis and with some so-called density function. This general constructions is shown to naturally associate a probability space to a profinite group and, in particular, to define a probability measure on the Galois group of an infinite Galois extension of a number field. Our probabilistic formalism is then applied on two distinct problems. First, we solve conjectures of Paul Bruckman and Peter Anderson on the rank of an integer in the Fibonacci sequence. Secondly, we compute the density of maximal prime divisors for an infinite family of third order integral linear recurring sequences
Hong, Haojie. "Grands diviseurs premiers de suites récurrentes linéaires." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0107.
Full textThis thesis is about lower bounds for the biggest prime divisors of linear recurrent sequences. First, we obtain a uniform and explicit version of Stewart’s seminal result about prime divisors of Lucas sequences. We show that constants in Stewart’s theorem depend only on the quadratic field corresponding to a Lucas sequence. Then we study the prime divisors of orders of elliptic curves over finite fields. Fixing an elliptic curve over Fq with q power of a prime number, the sequence #E(Fqn) happens to be a linear recurrent sequence of order 4. Let P(x) be the biggest prime dividing x. A lower bound of P(#E(Fqn)) is given by using Stewart’s argument and some more delicate discussions. Next, motivated by our previous two projects, we can show that when γ is an algebraic number of degree 2 and not a root of unity, there exists a prime ideal p of Q(γ) satisfying νp(γn − 1) ≥ 1, such that the rational prime p underlying p grows quicker than n. Finally, we consider a numerical application of Stewart’s method to Fibonacci numbers Fn. Relatively sharp bounds for P(Fn) are obtained. All of the above work relies heavily on Yu’s estimate for p-adic logarithmic forms
Books on the topic "Nombres de Fibonacci"
Fibonacci, El Somiador De Nombres. Editorial Juventud, S.A., 2011.
Find full textLines, Malcolm E. Dites un chiffre : Idées et problèmes mathématiques qui défient notre intelligence. Flammarion, 2002.
Find full textBook chapters on the topic "Nombres de Fibonacci"
"FIBONACCI AND ARABIC MATHEMATICS." In Arithmétique, Algèbre et Théorie des Nombres, 523–36. De Gruyter, 2023. http://dx.doi.org/10.1515/9783110784718-020.
Full text"FIBONACCI AND THE LATIN EXTENSION OF ARABIC MATHEMATICS." In Arithmétique, Algèbre et Théorie des Nombres, 629–46. De Gruyter, 2023. http://dx.doi.org/10.1515/9783110784718-025.
Full text"Fibonacci et le nombre d’or." In Rencontres au pays des maths, 173–82. EDP Sciences, 2023. http://dx.doi.org/10.1051/978-2-7598-3137-1.c029.
Full text