Academic literature on the topic 'NOISEX database'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'NOISEX database.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "NOISEX database"

1

Zhang, Yan, Zhen-min Tang, Yan-ping Li, and Yang Luo. "A Hierarchical Framework Approach for Voice Activity Detection and Speech Enhancement." Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/723643.

Full text
Abstract:
Accurate and effective voice activity detection (VAD) is a fundamental step for robust speech or speaker recognition. In this study, we proposed a hierarchical framework approach for VAD and speech enhancement. The modified Wiener filter (MWF) approach is utilized for noise reduction in the speech enhancement block. For the feature selection and voting block, several discriminating features were employed in a voting paradigm for the consideration of reliability and discriminative power. Effectiveness of the proposed approach is compared and evaluated to other VAD techniques by using two well-known databases, namely, TIMIT database and NOISEX-92 database. Experimental results show that the proposed method performs well under a variety of noisy conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Qi, Yingmei, Heming Huang, and Huiyun Zhang. "Research on Speech Emotion Recognition Method Based A-CapsNet." Applied Sciences 12, no. 24 (2022): 12983. http://dx.doi.org/10.3390/app122412983.

Full text
Abstract:
Speech emotion recognition is a crucial work direction in speech recognition. To increase the performance of speech emotion detection, researchers have worked relentlessly to improve data augmentation, feature extraction, and pattern formation. To address the concerns of limited speech data resources and model training overfitting, A-CapsNet, a neural network model based on data augmentation methodologies, is proposed in this research. In order to solve the issue of data scarcity and achieve the goal of data augmentation, the noise from the Noisex-92 database is first combined with four different data division methods (emotion-independent random-division, emotion-dependent random-division, emotion-independent cross-validation and emotion-dependent cross-validation methods, abbreviated as EIRD, EDRD, EICV and EDCV, respectively). The database EMODB is then used to analyze and compare the performance of the model proposed in this paper under different signal-to-noise ratios, and the results show that the proposed model and data augmentation are effective.
APA, Harvard, Vancouver, ISO, and other styles
3

FAROOQ, O., S. DATTA, and M. C. SHROTRIYA. "WAVELET SUB-BAND BASED TEMPORAL FEATURES FOR ROBUST HINDI PHONEME RECOGNITION." International Journal of Wavelets, Multiresolution and Information Processing 08, no. 06 (2010): 847–59. http://dx.doi.org/10.1142/s0219691310003845.

Full text
Abstract:
This paper proposes the use of wavelet transform-based feature extraction technique for Hindi speech recognition application. The new proposed features take into account temporal as well as frequency band energy variations for the task of Hindi phoneme recognition. The recognition performance achieved by the proposed features is compared with the standard MFCC and 24-band admissible wavelet packet-based features using a linear discriminant function based classifier. To evaluate robustness of these features, the NOISEX database is used to add different types of noise into phonemes to achieve signal-to-noise ratios in the range of 20 dB to -5 dB. The recognition results show that under noisy background the proposed technique always achieves a better performance over MFCC-based features.
APA, Harvard, Vancouver, ISO, and other styles
4

Rudramurthy, M. S., V. Kamakshi Prasad, and R. Kumaraswamy. "Speaker Verification Under Degraded Conditions Using Empirical Mode Decomposition Based Voice Activity Detection Algorithm." Journal of Intelligent Systems 23, no. 4 (2014): 359–78. http://dx.doi.org/10.1515/jisys-2013-0085.

Full text
Abstract:
AbstractThe performance of most of the state-of-the-art speaker recognition (SR) systems deteriorates under degraded conditions, owing to mismatch between the training and testing sessions. This study focuses on the front end of the speaker verification (SV) system to reduce the mismatch between training and testing. An adaptive voice activity detection (VAD) algorithm using zero-frequency filter assisted peaking resonator (ZFFPR) was integrated into the front end of the SV system. The performance of this proposed SV system was studied under degraded conditions with 50 selected speakers from the NIST 2003 database. The degraded condition was simulated by adding different types of noises to the original speech utterances. The different types of noises were chosen from the NOISEX-92 database to simulate degraded conditions at signal-to-noise ratio levels from 0 to 20 dB. In this study, widely used 39-dimension Mel frequency cepstral coefficient (MFCC; i.e., 13-dimension MFCCs augmented with 13-dimension velocity and 13-dimension acceleration coefficients) features were used, and Gaussian mixture model–universal background model was used for speaker modeling. The proposed system’s performance was studied against the energy-based VAD used as the front end of the SV system. The proposed SV system showed some encouraging results when EMD-based VAD was used at its front end.
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Jie. "Combining Speech Enhancement and Cepstral Mean Normalization for LPC Cepstral Coefficients." Key Engineering Materials 474-476 (April 2011): 349–54. http://dx.doi.org/10.4028/www.scientific.net/kem.474-476.349.

Full text
Abstract:
A mismatch between the training and testing in noisy circumstance often causes a drastic decrease in the performance of speech recognition system. The robust feature coefficients might suppress this sensitivity of mismatch during the recognition stage. In this paper, we investigate the noise robustness of LPC Cepstral Coefficients (LPCC) by using speech enhancement with feature post-processing. At front-end, speech enhancement in the wavelet domain is used to remove noise components from noisy signals. This enhanced processing adopts the combination of discrete wavelet transform (DWT), wavelet packet decomposition (WPD), multi-thresholds processing etc to obtain the estimated speech. The feature post-processing employs cepstral mean normalization (CMN) to compensate the signal distortion and residual noise of enhanced signals in the cepstral domain. The performance of digit speech recognition systems is evaluated under noisy environments based on NOISEX-92 database. The experimental results show that the presented method exhibits performance improvements in the adverse noise environment compared with the previous features.
APA, Harvard, Vancouver, ISO, and other styles
6

Upadhyaya, Prashant, Omar Farooq, M. R. Abidi, and Priyanka Varshney. "Comparative Study of Visual Feature for Bimodal Hindi Speech Recognition." Archives of Acoustics 40, no. 4 (2015): 609–19. http://dx.doi.org/10.1515/aoa-2015-0061.

Full text
Abstract:
Abstract In building speech recognition based applications, robustness to different noisy background condition is an important challenge. In this paper bimodal approach is proposed to improve the robustness of Hindi speech recognition system. Also an importance of different types of visual features is studied for audio visual automatic speech recognition (AVASR) system under diverse noisy audio conditions. Four sets of visual feature based on Two-Dimensional Discrete Cosine Transform feature (2D-DCT), Principal Component Analysis (PCA), Two-Dimensional Discrete Wavelet Transform followed by DCT (2D-DWT- DCT) and Two-Dimensional Discrete Wavelet Transform followed by PCA (2D-DWT-PCA) are reported. The audio features are extracted using Mel Frequency Cepstral coefficients (MFCC) followed by static and dynamic feature. Overall, 48 features, i.e. 39 audio features and 9 visual features are used for measuring the performance of the AVASR system. Also, the performance of the AVASR using noisy speech signal generated by using NOISEX database is evaluated for different Signal to Noise ratio (SNR: 30 dB to −10 dB) using Aligarh Muslim University Audio Visual (AMUAV) Hindi corpus. AMUAV corpus is Hindi continuous speech high quality audio visual databases of Hindi sentences spoken by different subjects.
APA, Harvard, Vancouver, ISO, and other styles
7

Varga, Andrew, and Herman J. M. Steeneken. "Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems." Speech Communication 12, no. 3 (1993): 247–51. http://dx.doi.org/10.1016/0167-6393(93)90095-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Ren Di, and Yan Li Zhang. "Denoising of ECG Signal Based on Empirical Mode Decomposition and Adaptive Noise Cancellation." Applied Mechanics and Materials 40-41 (November 2010): 140–45. http://dx.doi.org/10.4028/www.scientific.net/amm.40-41.140.

Full text
Abstract:
To remove the noises in ECG and to overcome the disadvantage of the denoising method only based on empirical mode decomposition (EMD), a combination of EMD and adaptive noise cancellation is introduced in this paper. The noisy ECG signals are firstly decomposed into intrinsic mode functions (IMFs) by EMD. Then the IMFs corresponding to noises are used to reconstruct signal. The reconstructed signal as the reference input of adaptive noise cancellation and the noisy ECG as the basic input, the de-noised ECG signal is obtained after adaptive filtering. The de-noised ECG has high signal-to-noise ratio, preferable correlation coefficient and lower mean square error. Through analyzing these performance parameters and testing the denoising method using MIT-BIH Database, the conclusion can be drawn that the combination of EMD and adaptive noise cancellation has considered the frequency distribution of ECG and noises, eliminate the noises effectively and need not to select a proper threshold.
APA, Harvard, Vancouver, ISO, and other styles
9

Ataeyan, Mahdieh, and Negin Daneshpour. "Automated Noise Detection in a Database Based on a Combined Method." Statistics, Optimization & Information Computing 9, no. 3 (2021): 665–80. http://dx.doi.org/10.19139/soic-2310-5070-879.

Full text
Abstract:
Data quality has diverse dimensions, from which accuracy is the most important one. Data cleaning is one of the preprocessing steps in data mining which consists of detecting errors and repairing them. Noise is a common type of error, that occur in database. This paper proposes an automated method based on the k-means clustering for noise detection. At first, each attribute (Aj) is temporarily removed from data and the k-means clustering is applied to other attributes. Thereafter, the k-nearest neighbors is used in each cluster. After that a value is predicted for Aj in each record by the nearest neighbors. The proposed method detects noisy attributes using predicted values. Our method is able to identify several noises in a record. In addition, this method can detect noise in fields with different data types, too. Experiments show that this method can averagely detect 92% of the noises existing in the data. The proposed method is compared with a noise detection method using association rules. The results indicate that the proposed method have improved noise detection averagely by 13%.
APA, Harvard, Vancouver, ISO, and other styles
10

Ma, Lilong, Tuanwei Xu, Kai Cao, Yinghao Jiang, Dimin Deng, and Fang Li. "Signal Activity Detection for Fiber Optic Distributed Acoustic Sensing with Adaptive-Calculated Threshold." Sensors 22, no. 4 (2022): 1670. http://dx.doi.org/10.3390/s22041670.

Full text
Abstract:
The key point on analyzing the data stream measured by fiber optic distributed acoustic sensing (DAS) is signal activity detection separating measured signals from environmental noise. The inability to calculate the threshold for signal activity detection accurately and efficiently without affecting the measured signals is a bottleneck problem for current methods. In this article, a novel signal activity detection method with the adaptive-calculated threshold is proposed to solve the problem. With the analysis of the time-varying random noise’s statistical commonality and the short-term energy (STE) of real-time data stream, the top range of the total STE distribution of the noise is found accurately for real-time data stream’s ascending STE, thus the adaptive dividing level of signals and noise is obtained as the threshold. Experiments are implemented with simulated database and urban field database with complex noise. The average detection accuracies of the two databases are 97.34% and 90.94% only consuming 0.0057 s for a data stream of 10 s, which demonstrates the proposed method is accurate and high efficiency for signal activity detection.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!