Journal articles on the topic 'Noiseless amplification'

To see the other types of publications on this topic, follow the link: Noiseless amplification.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Noiseless amplification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Assad, Syed M., Mark Bradshaw, and Ping Koy Lam. "Phase estimation of coherent states with a noiseless linear amplifier." International Journal of Quantum Information 15, no. 01 (February 2017): 1750009. http://dx.doi.org/10.1142/s0219749917500095.

Full text
Abstract:
Amplification of quantum states is inevitably accompanied with the introduction of noise at the output. For protocols that are probabilistic with heralded success, noiseless linear amplification in theory may still be possible. When the protocol is successful, it can lead to an output that is a noiselessly amplified copy of the input. When the protocol is unsuccessful, the output state is degraded and is usually discarded. Probabilistic protocols may improve the performance of some quantum information protocols, but not for metrology if the whole statistics is taken into consideration. We calculate the precision limits on estimating the phase of coherent states using a noiseless linear amplifier by computing its quantum Fisher information and we show that on average, the noiseless linear amplifier does not improve the phase estimate. We also discuss the case where abstention from measurement can reduce the cost for estimation.
APA, Harvard, Vancouver, ISO, and other styles
2

Choi, Sang-Kyung, Michael Vasilyev, and Prem Kumar. "Noiseless Optical Amplification of Images." Physical Review Letters 83, no. 10 (September 6, 1999): 1938–41. http://dx.doi.org/10.1103/physrevlett.83.1938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Choi, Sang-Kyung, Michael Vasilyev, and Prem Kumar. "Noiseless Optical Amplification of Images." Optics and Photonics News 10, no. 12 (December 1, 1999): 35. http://dx.doi.org/10.1364/opn.10.12.000035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kolobov, Mikhail I., and Luigi A. Lugiato. "Noiseless amplification of optical images." Physical Review A 52, no. 6 (December 1, 1995): 4930–40. http://dx.doi.org/10.1103/physreva.52.4930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Hailong, Yajuan Zhang, Xiong Zhang, Chunliu Zhao, Shangzhong Jin, and Jietai Jing. "Multi-Way Noiseless Signal Amplification in a Symmetrical Cascaded Four-Wave Mixing Process." Photonics 9, no. 4 (April 1, 2022): 229. http://dx.doi.org/10.3390/photonics9040229.

Full text
Abstract:
According to the fundamental laws of quantum optics, vacuum noise is inevitably added to the signal when one tries to amplify a signal. However, it has been recently shown that noiseless signal amplification can be realized when a phase-sensitive process is involved. Two phase-sensitive schemes, a correlation injection scheme and a two-beam phase-sensitive amplifier scheme, are both proposed to realize multi-way noiseless signal amplification in a symmetrical cascaded four-wave mixing process. We theoretically study the possibility of the realization of four-way noiseless signal amplification by using these two schemes. The results show that the correlation injection scheme can only realize one-way noiseless signal amplification, but that the two-beam phase-sensitive amplifier scheme can lead to four-way noise figure values below 1. Our results here may find potential applications in quantum information processing, e.g., the realization of quantum information tap and quantum non-demolition measurement, etc.
APA, Harvard, Vancouver, ISO, and other styles
6

Adnane, Hamza, and Matteo G. A. Paris. "Teleportation improvement by noiseless linear amplification." Quantum Information and Computation 19, no. 11&12 (September 2019): 935–51. http://dx.doi.org/10.26421/qic19.11-12-3.

Full text
Abstract:
We address de-Gaussification of continuous variables Gaussian states by optimal non-deterministic noiseless linear amplifier (NLA) and analyze in details the properties of the amplified states. In particular, we investigate the entanglement content and the non-Gaussian character for the class of non-Gaussian entangled state obtained by using NL-amplification of two-mode squeezed vacua (twin-beam, TWB). We show that entanglement always increases, whereas improved EPR correlations are observed only when the input TWB has low energy. We then examine a Braunstein-Kimble-like protocol for the teleportation of coherent states, and compare the performances of TWB-based teleprotation with those obtained using NL-amplified resources. We show that teleportation fidelity and security may be improved for a large range of NLA parameters (gain and threshold).
APA, Harvard, Vancouver, ISO, and other styles
7

Huntington, E. H., P. K. Lam, T. C. Ralph, D. E. McClelland, and H. A. Bachor. "Noiseless independent signal and power amplification." Optics Letters 23, no. 7 (April 1, 1998): 540. http://dx.doi.org/10.1364/ol.23.000540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Protsenko, I. E., and L. A. Lugiato. "Noiseless amplification in the optical transistor." Optics Communications 109, no. 3-4 (July 1994): 304–11. http://dx.doi.org/10.1016/0030-4018(94)90697-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lantz, Eric, and Fabrice Devaux. "Parametric Amplification of Images: From Time Gating to Noiseless Amplification." IEEE Journal of Selected Topics in Quantum Electronics 14, no. 3 (2008): 635–47. http://dx.doi.org/10.1109/jstqe.2008.918650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ho, Joseph, Allen Boston, Matthew Palsson, and Geoff Pryde. "Experimental noiseless linear amplification using weak measurements." New Journal of Physics 18, no. 9 (September 14, 2016): 093026. http://dx.doi.org/10.1088/1367-2630/18/9/093026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wen-kui LI, 李文奎, 李治 Zhi LI, 郭辉 Hui GUO, and 刘奎 Kui LIU. "基于无噪声放大的精密测量增强." Acta Sinica Quantum Optica 27, no. 2 (2021): 102. http://dx.doi.org/10.3788/jqo20212702.0202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chrzanowski, Helen M., Nathan Walk, Syed M. Assad, Jiri Janousek, Sara Hosseini, Timothy C. Ralph, Thomas Symul, and Ping Koy Lam. "Measurement-based noiseless linear amplification for quantum communication." Nature Photonics 8, no. 4 (March 16, 2014): 333–38. http://dx.doi.org/10.1038/nphoton.2014.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yang, Song, Ning-Juan Ruan, Yun Su, Xu-Ling Lin, and Zhi-Qiang Wu. "Noiseless Linear Amplification with General Local Unitary Operations." Chinese Physics Letters 33, no. 7 (July 2016): 070304. http://dx.doi.org/10.1088/0256-307x/33/7/070304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kocsis, S., G. Y. Xiang, T. C. Ralph, and G. J. Pryde. "Heralded noiseless amplification of a photon polarization qubit." Nature Physics 9, no. 1 (November 11, 2012): 23–28. http://dx.doi.org/10.1038/nphys2469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yuen, Horace P. "Amplification of quantum states and noiseless photon amplifiers." Physics Letters A 113, no. 8 (January 1986): 405–7. http://dx.doi.org/10.1016/0375-9601(86)90660-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Xiang, G. Y., T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde. "Heralded noiseless linear amplification and distillation of entanglement." Nature Photonics 4, no. 5 (March 28, 2010): 316–19. http://dx.doi.org/10.1038/nphoton.2010.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lam, P. K., T. C. Ralph, E. H. Huntington, and H. A. Bachor. "Noiseless Signal Amplification using Positive Electro-Optic Feedforward." Physical Review Letters 79, no. 8 (August 25, 1997): 1471–74. http://dx.doi.org/10.1103/physrevlett.79.1471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mancini, S., A. Gatti, and L. Lugiato. "Noiseless amplification of images in a confocal cavity." European Physical Journal D 12, no. 3 (November 2000): 499–508. http://dx.doi.org/10.1007/s100530070011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Walk, Nathan, Austin P. Lund, and Timothy C. Ralph. "Nondeterministic noiseless amplification via non-symplectic phase space transformations." New Journal of Physics 15, no. 7 (July 5, 2013): 073014. http://dx.doi.org/10.1088/1367-2630/15/7/073014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fiurášek, Jaromír. "Teleportation-based noiseless quantum amplification of coherent states of light." Optics Express 30, no. 2 (January 5, 2022): 1466. http://dx.doi.org/10.1364/oe.443389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bruno, N., V. Pini, A. Martin, and R. T. Thew. "A complete characterization of the heralded noiseless amplification of photons." New Journal of Physics 15, no. 9 (September 2, 2013): 093002. http://dx.doi.org/10.1088/1367-2630/15/9/093002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Park, Jinwoo, Jaewoo Joo, Alessandro Zavatta, Marco Bellini, and Hyunseok Jeong. "Efficient noiseless linear amplification for light fields with larger amplitudes." Optics Express 24, no. 2 (January 15, 2016): 1331. http://dx.doi.org/10.1364/oe.24.001331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lovering, D. J., J. Webjörn, P. St J. Russell, J. A. Levenson, and P. Vidakovic. "Noiseless optical amplification in quasi-phase-matched bulk lithium niobate." Optics Letters 21, no. 18 (September 15, 1996): 1439. http://dx.doi.org/10.1364/ol.21.001439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Yang, Song, XuBo Zou, GuangCan Guo, NingJuan Ruan, XuLing Lin, and ZhiQiang Wu. "Long baseline weak-thermal-light interferometry with noiseless linear amplification." Journal of the Optical Society of America B 32, no. 6 (May 5, 2015): 1031. http://dx.doi.org/10.1364/josab.32.001031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mecozzi, Antonio, and Mark Shtaif. "Noiseless amplification and signal-to-noise ratio in single-sideband transmission." Optics Letters 28, no. 3 (February 1, 2003): 203. http://dx.doi.org/10.1364/ol.28.000203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Buchler, Ben C., Elanor H. Huntington, and Timothy C. Ralph. "Noiseless phase quadrature amplification via an electro-optic feed-forward technique." Physical Review A 60, no. 1 (July 1, 1999): 529–33. http://dx.doi.org/10.1103/physreva.60.529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Levandovsky, Dmitry, Michael Vasilyev, and Prem Kumar. "Near-noiseless amplification of light by a phase-sensitive fibre amplifier." Pramana 56, no. 2-3 (February 2001): 281–85. http://dx.doi.org/10.1007/s12043-001-0124-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Barbieri, M., F. Ferreyrol, R. Blandino, R. Tualle-Brouri, and Ph Grangier. "Nondeterministic noiseless amplification of optical signals: a review of recent experiments." Laser Physics Letters 8, no. 6 (April 5, 2011): 411–17. http://dx.doi.org/10.1002/lapl.201010143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mecozzi, Antonio, and Mark Shtaif. "Noiseless amplification and signal-to-noise ratio in single-sideband transmission: erratum." Optics Letters 28, no. 14 (July 15, 2003): 1278. http://dx.doi.org/10.1364/ol.28.001278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Choi, Sang-Kyung, Michael Vasilyev, and Prem Kumar. "Erratum: Noiseless Optical Amplification of Images [Phys. Rev. Lett. 83, 1938 (1999)]." Physical Review Letters 84, no. 6 (February 7, 2000): 1361. http://dx.doi.org/10.1103/physrevlett.84.1361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Levenson, J. A., K. Bencheikh, D. J. Lovering, P. Vidakovic, and C. Simonneau. "Quantum noise in optical parametric amplification: a means to achieve noiseless optical functions." Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 9, no. 2 (April 1997): 221–37. http://dx.doi.org/10.1088/1355-5111/9/2/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

LUGIATO, L. A. "Noiseless amplification in cavity-based optical systems with an internal two-photon process." Journal of Modern Optics 43, no. 2 (February 1, 1996): 259–68. http://dx.doi.org/10.1080/095003496156147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Ling-Quan, Yu-Bo Sheng, and Lan Zhou. "Noiseless linear amplification for the single-photon entanglement of arbitrary polarization–time-bin qudit." Chinese Physics B 28, no. 1 (January 2019): 010302. http://dx.doi.org/10.1088/1674-1056/28/1/010302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ralph, T. C., and H. A. Bachor. "Noiseless amplification of the coherent amplitude of bright squeezed light using a standard laser amplifier." Optics Communications 119, no. 3-4 (September 1995): 301–4. http://dx.doi.org/10.1016/0030-4018(95)00336-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ralph, T. C., and H. A. Bachor. "Noiseless amplification of the coherent amplitude of bright squeezed light using a standard laser amplifier." Optics Communications 122, no. 1-3 (December 1995): 94–98. http://dx.doi.org/10.1016/0030-4018(95)00625-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lugiato, L. A., A. Pregnolato, and L. Spinelli. "Noiseless amplification in cavity-based optical systems with an internal two-photon process. I. General approach." Journal of Modern Optics 43, no. 2 (February 1996): 259–68. http://dx.doi.org/10.1080/09500349608232740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Abebe, T. "The Quantum analysis of Nondegenerate Three-Level Laser with Spontaneous Emission and Noiseless Vacuum Reservoir." Ukrainian Journal of Physics 63, no. 11 (December 1, 2018): 969. http://dx.doi.org/10.15407/ujpe63.11.969.

Full text
Abstract:
The analysis of quantum properties of the cavity light produced by a coherently driven nondegenerate three-level laser possessing an open cavity and coupled to a two-mode vacuum reservoir is presented. The normal ordering of noise operators associated with the vacuum reservoir is considered. Applying the solutions of the equations of evolution for the expectation values of the atomic operators and the quantum Langevin equations for the cavity mode operators, the squeezing properties, entanglement amplification, and the normalized second-order correlation function of the cavity radiation are described. The three-level laser generates squeezed light under certain conditions, with maximum intracavity squeezing being 50% below the vacuum-state level. Moreover, it is found that the presence of spontaneous emission increases the quadrature squeezing and entanglement and decreses the mean photon number of the two-mode cavity radiation.
APA, Harvard, Vancouver, ISO, and other styles
38

Zhou, Kunlin, Xuelin Wu, Yun Mao, Zhiya Chen, Qin Liao, and Ying Guo. "Performance Improvement of Discretely Modulated Continuous-Variable Quantum Key Distribution with Untrusted Source via Heralded Hybrid Linear Amplifier." Entropy 22, no. 8 (August 12, 2020): 882. http://dx.doi.org/10.3390/e22080882.

Full text
Abstract:
In practical quantum communication networks, the scheme of continuous-variable quantum key distribution (CVQKD) faces a challenge that the entangled source is controlled by a malicious eavesdropper, and although it still can generate a positive key rate and security, its performance needs to be improved, especially in secret key rate and maximum transmission distance. In this paper, we proposed a method based on the four-state discrete modulation and a heralded hybrid linear amplifier to enhance the performance of CVQKD where the entangled source originates from malicious eavesdropper. The four-state CVQKD encodes information by nonorthogonal coherent states in phase space. It has better transmission distance than Gaussian modulation counterpart, especially at low signal-to-noise ratio (SNR). Moreover, the hybrid linear amplifier concatenates a deterministic linear amplifier (DLA) and a noiseless linear amplifier (NLA), which can improve the probability of amplification success and reduce the noise penalty caused by the measurement. Furthermore, the hybrid linear amplifier can raise the SNR of CVQKD and tune between two types of performance for high-gain mode and high noise-reduction mode, therefore it can extend the maximal transmission distance while the entangled source is untrusted.
APA, Harvard, Vancouver, ISO, and other styles
39

Pregnolato, A., L. Spinelli, L. A. Lugiato, and I. E. Protsenko. "Noiseless amplification in cavity-based optical systems with an internal two-photon process. II. Self-frequency-doubling laser and second-harmonic generation, self-down-converting laser." Journal of Modern Optics 43, no. 2 (February 1996): 269–87. http://dx.doi.org/10.1080/09500349608232741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

White, Andrew G., Tim C. Ralph, and Hans-A. Bachor. "Comment on ‘Noiseless amplification in cavity-based optical systems with an internal two-photon process. II. Self-frequency-doubling laser and second-harmonic generation, self-down-converting laser’." Journal of Modern Optics 44, no. 3 (March 1997): 651–52. http://dx.doi.org/10.1080/09500349708232928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

White, Andrew G., Tim C. Ralph, and Hans-A. Bachor. "Comment on Noiseless amplification in cavity-based optical systems with an internal two-photon process. II. Self-frequency-doubling laser and second-harmonic generation, self-down-converting laser`." Journal of Modern Optics 44, no. 3 (March 1, 1997): 651–52. http://dx.doi.org/10.1080/095003497154003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pregnolato, A., L. Spinelli, L. A. Lugiato, and I. E. Protsenko. "Answer to Comment on Noiseless amplification in cavitybased optical systems with an internal two-photon process. II. Self-frequency-doubling laser and second-harmonic generation, self-down-converting laser`." Journal of Modern Optics 44, no. 3 (March 1, 1997): 653–54. http://dx.doi.org/10.1080/095003497154012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pregnolato, A., L. Spinelli, L. A. Lugiato, and I. E. Protsenko. "Answer to comment on ‘Noiseless amplification in cavity-based optical systems with an internal two-photon process. II. Self-frequency-doubling laser and second-harmonic generation, self-down-converting laser’." Journal of Modern Optics 44, no. 3 (March 1997): 653–54. http://dx.doi.org/10.1080/09500349708232929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dunjko, Vedran, and Erika Andersson. "Truly noiseless probabilistic amplification." Physical Review A 86, no. 4 (October 18, 2012). http://dx.doi.org/10.1103/physreva.86.042322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hu, Meng-Jun, and Yong-Sheng Zhang. "Deterministic noiseless amplification of coherent states." Physical Review A 92, no. 2 (August 26, 2015). http://dx.doi.org/10.1103/physreva.92.022352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mosset, Alexis, Fabrice Devaux, and Eric Lantz. "Spatially Noiseless Optical Amplification of Images." Physical Review Letters 94, no. 22 (June 9, 2005). http://dx.doi.org/10.1103/physrevlett.94.223603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Winnel, Matthew S., Nedasadat Hosseinidehaj, and Timothy C. Ralph. "Generalized quantum scissors for noiseless linear amplification." Physical Review A 102, no. 6 (December 21, 2020). http://dx.doi.org/10.1103/physreva.102.063715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Blandino, Rémi, Marco Barbieri, Philippe Grangier, and Rosa Tualle-Brouri. "Heralded noiseless linear amplification and quantum channels." Physical Review A 91, no. 6 (June 5, 2015). http://dx.doi.org/10.1103/physreva.91.062305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yang, Song, ShengLi Zhang, XuBo Zou, SiWen Bi, and XuLing Lin. "Continuous-variable entanglement distillation with noiseless linear amplification." Physical Review A 86, no. 6 (December 20, 2012). http://dx.doi.org/10.1103/physreva.86.062321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Adnane, Hamza, Matteo Bina, Francesco Albarelli, Abdelhakim Gharbi, and Matteo G. A. Paris. "Quantum state engineering by nondeterministic noiseless linear amplification." Physical Review A 99, no. 6 (June 18, 2019). http://dx.doi.org/10.1103/physreva.99.063823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography