Academic literature on the topic 'Node embeddings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Node embeddings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Node embeddings"
BOZKURT, ILKER NADI, HAI HUANG, BRUCE MAGGS, ANDRÉA RICHA, and MAVERICK WOO. "Mutual Embeddings." Journal of Interconnection Networks 15, no. 01n02 (March 2015): 1550001. http://dx.doi.org/10.1142/s0219265915500012.
Full textCheng, Pengyu, Yitong Li, Xinyuan Zhang, Liqun Chen, David Carlson, and Lawrence Carin. "Dynamic Embedding on Textual Networks via a Gaussian Process." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (April 3, 2020): 7562–69. http://dx.doi.org/10.1609/aaai.v34i05.6255.
Full textPark, Chanyoung, Donghyun Kim, Jiawei Han, and Hwanjo Yu. "Unsupervised Attributed Multiplex Network Embedding." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5371–78. http://dx.doi.org/10.1609/aaai.v34i04.5985.
Full textHou, Yuchen, and Lawrence B. Holder. "On Graph Mining With Deep Learning: Introducing Model R for Link Weight Prediction." Journal of Artificial Intelligence and Soft Computing Research 9, no. 1 (January 1, 2019): 21–40. http://dx.doi.org/10.2478/jaiscr-2018-0022.
Full textWang, Yueyang, Ziheng Duan, Binbing Liao, Fei Wu, and Yueting Zhuang. "Heterogeneous Attributed Network Embedding with Graph Convolutional Networks." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 10061–62. http://dx.doi.org/10.1609/aaai.v33i01.330110061.
Full textHe, Tao, Lianli Gao, Jingkuan Song, Xin Wang, Kejie Huang, and Yuanfang Li. "SNEQ: Semi-Supervised Attributed Network Embedding with Attention-Based Quantisation." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 4091–98. http://dx.doi.org/10.1609/aaai.v34i04.5832.
Full textWang, Zheng, Yuexin Wu, Yang Bao, Jing Yu, and Xiaohui Wang. "Fusing Node Embeddings and Incomplete Attributes by Complement-Based Concatenation." Wireless Communications and Mobile Computing 2021 (February 25, 2021): 1–10. http://dx.doi.org/10.1155/2021/6654349.
Full textZhong, Jianan, Hongjun Qiu, and Benyun Shi. "Dynamics-Preserving Graph Embedding for Community Mining and Network Immunization." Information 11, no. 5 (May 2, 2020): 250. http://dx.doi.org/10.3390/info11050250.
Full textCelikkanat, Abdulkadir, and Fragkiskos D. Malliaros. "Exponential Family Graph Embeddings." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 3357–64. http://dx.doi.org/10.1609/aaai.v34i04.5737.
Full textZhou, Sheng, Xin Wang, Jiajun Bu, Martin Ester, Pinggang Yu, Jiawei Chen, Qihao Shi, and Can Wang. "DGE: Deep Generative Network Embedding Based on Commonality and Individuality." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 6949–56. http://dx.doi.org/10.1609/aaai.v34i04.6178.
Full textDissertations / Theses on the topic "Node embeddings"
Li, Mengzhen. "Integration of Node Embeddings for Multiple Versions of A Network." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1595435155975104.
Full textYandrapally, Aruna Harini. "Combining Node Embeddings From Multiple Contexts Using Multi Dimensional Scaling." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627658906149105.
Full textSabo, Jozef. "Aplikace metody učení bez učitele na hledání podobných grafů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445517.
Full textWåhlin, Lova. "Towards Machine Learning Enabled Automatic Design of IT-Network Architectures." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249213.
Full textDet är många maskininlärningstekniker som inte kan appliceras på data i form av en graf. Tekniker som graph embedding, med andra ord att mappa en graf till ett vektorrum, can öppna upp för en större variation av maskininlärningslösningar. Det här examensarbetet evaluerar hur väl statiska graph embeddings kan fånga viktiga säkerhetsegenskaper hos en IT-arkitektur som är modellerad som en graf, med syftet att användas i en reinforcement learning algoritm. Dom egenskaper i grafen som används för att validera embedding metoderna är hur lång tid det skulle ta för en obehörig attackerare att penetrera IT-arkitekturen. Algorithmerna som implementeras är node embedding metoderna node2vec och gat2vec, samt graph embedding metoden graph2vec. Dom prediktiva resultaten är jämförda med två basmetoder. Resultaten av alla tre metoderna visar tydliga förbättringar relativt basmetoderna, där F1 värden i några fall uppvisar en fördubbling. Det går alltså att dra slutsatsen att att alla tre metoder kan fånga upp säkerhetsegenskaper i en IT-arkitektur. Dock går det inte att säga att statiska graph embeddings är den bästa lösningen till att representera en graf i en reinforcement learning algoritm, det finns andra komplikationer med statiska metoder, till exempel att embeddings från dessa metoder inte kan generaliseras till data som inte var använd till träning. För att kunna dra en absolut slutsats krävs mer undersökning, till exempel av dynamiska graph embedding metoder.
Zhu, Xiaoting. "Systematic Assessment of Structural Features-Based Graph Embedding Methods with Application to Biomedical Networks." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1592394966493963.
Full textJmila, Houda. "Dynamic resource allocation and management in virtual networks and Clouds." Thesis, Evry, Institut national des télécommunications, 2015. http://www.theses.fr/2015TELE0023/document.
Full textCloud computing is a promising technology enabling IT resources reservation and utilization on a pay-as-you-go manner. In addition to the traditional computing resources, cloud tenants expect compete networking of their dedicated resources to easily deploy network functions and services. They need to manage an entire Virtual Network (VN) or infrastructure. Thus, Cloud providers should deploy dynamic and adaptive resource provisioning solutions to allocate virtual networks that reflect the time-varying needs of Cloud-hosted applications. Prior work on virtual network resource provisioning only focused on the problem of mapping the virtual nodes and links composing a virtual network request to the substrate network nodes and paths, known as the Virtual network embedding (VNE) problem. Little attention was paid to the resource management of the allocated resources to continuously meet the varying demands of embedded virtual networks and to ensure efficient substrate resource utilization. The aim of this thesis is to enable dynamic and preventive virtual network resources provisioning to deal with demand fluctuation during the virtual network lifetime, and to enhance the substrate resources usage. To reach these goals, the thesis proposes adaptive resource allocation algorithms for evolving virtual network requests. We adress the extension of an embedded virtual node requiring more resources and consider the substrate network profitability. We also deal with the bandwidth demand variation in embedded virtual links. We first provide a heuristic algorithm to deal with virtual nodes demand fluctuation. The work is extended by designing a preventive re-configuration scheme to enhance substrate network profitability. Finally, a distributed, local-view and parallel framework was devised to handle embedded virtual links bandwidth fluctuations. The approach is composed of a controller and three algorithms running in each substrate node in a distributed and parallel manner. The framework is based on the self-stabilization approach, and can manage various forms of bandwidth demand variations simultaneously
Lin, Christy. "Unsupervised random walk node embeddings for network block structure representation." Thesis, 2021. https://hdl.handle.net/2144/43083.
Full text2023-09-24T00:00:00Z
Feng, Ming-Han, and 馮銘漢. "Multi-relational Network Embeddings Considering Link Structures and Node Attributes." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/466w9j.
Full text國立臺灣大學
資訊網路與多媒體研究所
105
Multi-relational networks are ubiquitous in real world. It is, however, difficult to be analyzed due to the complex structure of the network. A plausible approach to analyze such network is to embed the entity information as an informative feature vector. However, present embedding methods either consider only single-relational information, or neglect the importance of structural information. In addition, some of them require fine-tuning of hyperparameters, which might not be feasible for an unsupervised embedding generation task. In this work we propose MUSE, a Multi-relational Unsupervised link-Structure preserving Embeddings method, which learns the representations for each node and relation by maximizing the likelihood of observations on the given network. Additional node attributes are also preserved under our design. Besides, MUSE features less sensitive hyperparameters and scalablility by edge-sampling strategy. The extensive experiments on various real-world applications also demonstrate the effectiveness and robustness of our model.
"Numerical Performance of the Holomorphic Embedding Method." Master's thesis, 2018. http://hdl.handle.net/2286/R.I.50476.
Full textDissertation/Thesis
Masters Thesis Electrical Engineering 2018
Liu, Hsien Jen, and 劉獻仁. "Node Fault Tolerant Hamiltonian Cycle Embedding in Honeycomb Rectangular Torus Network." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/41779530434993281960.
Full text國立交通大學
資訊科學系
89
In this thesis, we propose a variation of Honeycomb Torus, called Honeycomb Rectangular Torus Networks.The Honeycomb Rectangular Torus is Hamlitonian and to remove a pair of nodes from each partite sets of graph, still has Hamlitonian cycle. Honeycomb Rectangular Torus Network is homogeneous graph. This property is very helpful, because we can reduce the complexity of the Honeycomb Rectangular Torus. The Honeycomb Rectangular Torus HReT(m,n) is defined in the paper written by Stojmenovic Honeycomb Rectangular Torus has many good properties including homogeneous graph, 3-regular graph, Bipartite graph , hamiltonian cycle, 1-p hamiltonian cycle, hamiltonian connectivity etc. Since $HReT(m,n)$ is regular of degree 3, it can tolerate at most two node faults in the worst case in order to construct a hamiltonian cycle. In this paper, we will prove that all the honeycomb rectangular torus have hamiltonian cycle, when any one pair nodes fault.
Books on the topic "Node embeddings"
M. Le Marc Le Menestrel. A note on embedding von Neumann and Morgenstern utility theory in a qualitative context. Fontainebleau: INSEAD, 1998.
Find full textBook chapters on the topic "Node embeddings"
Vu, Thuy, and D. Stott Parker. "Mining Community Structure with Node Embeddings." In Lecture Notes in Social Networks, 123–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51367-6_6.
Full textChekol, Melisachew Wudage, and Giuseppe Pirrò. "Refining Node Embeddings via Semantic Proximity." In Lecture Notes in Computer Science, 74–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62419-4_5.
Full textMeghashyam, P., and V. Susheela Devi. "Community Based Node Embeddings for Networks." In Communications in Computer and Information Science, 380–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36808-1_41.
Full textWu, Changmin, Giannis Nikolentzos, and Michalis Vazirgiannis. "Matching Node Embeddings Using Valid Assignment Kernels." In Complex Networks and Their Applications VIII, 810–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36687-2_67.
Full textRoy, Aman, Vinayak Kumar, Debdoot Mukherjee, and Tanmoy Chakraborty. "Learning Multigraph Node Embeddings Using Guided Lévy Flights." In Advances in Knowledge Discovery and Data Mining, 524–37. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47426-3_41.
Full textIdahl, Maximilian, Megha Khosla, and Avishek Anand. "Finding Interpretable Concept Spaces in Node Embeddings Using Knowledge Bases." In Machine Learning and Knowledge Discovery in Databases, 229–40. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43823-4_20.
Full textRiba, Pau, Josep Lladós, Alicia Fornés, and Anjan Dutta. "Large-Scale Graph Indexing Using Binary Embeddings of Node Contexts." In Graph-Based Representations in Pattern Recognition, 208–17. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18224-7_21.
Full textWang, Zheng, Jian Cui, Yingying Chen, and Changjun Hu. "SOLAR: Fusing Node Embeddings and Attributes into an Arbitrary Space." In Database Systems for Advanced Applications, 442–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59419-0_27.
Full textKhan, Rayyan Ahmad, Muhammad Umer Anwaar, Omran Kaddah, Zhiwei Han, and Martin Kleinsteuber. "Unsupervised Learning of Joint Embeddings for Node Representation and Community Detection." In Machine Learning and Knowledge Discovery in Databases. Research Track, 19–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86520-7_2.
Full textSteenwinckel, Bram, Gilles Vandewiele, Pieter Bonte, Michael Weyns, Heiko Paulheim, Petar Ristoski, Filip De Turck, and Femke Ongenae. "Walk Extraction Strategies for Node Embeddings with RDF2Vec in Knowledge Graphs." In Communications in Computer and Information Science, 70–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87101-7_8.
Full textConference papers on the topic "Node embeddings"
Singer, Uriel, Ido Guy, and Kira Radinsky. "Node Embedding over Temporal Graphs." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/640.
Full textCelikkanat, Abdulkadir, and Fragkiskos D. Malliaros. "Kernel Node Embeddings." In 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2019. http://dx.doi.org/10.1109/globalsip45357.2019.8969363.
Full textDalmia, Ayushi, Ganesh J, and Manish Gupta. "Towards Interpretation of Node Embeddings." In Companion of the The Web Conference 2018. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3184558.3191523.
Full textLuo, Gongxu, Jianxin Li, Hao Peng, Carl Yang, Lichao Sun, Philip S. Yu, and Lifang He. "Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural Networks." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/381.
Full textHao, Yu, Xin Cao, Yixiang Fang, Xike Xie, and Sibo Wang. "Inductive Link Prediction for Nodes Having Only Attribute Information." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/168.
Full textHuang, Hong, Ruize Shi, Wei Zhou, Xiao Wang, Hai Jin, and Xiaoming Fu. "Temporal Heterogeneous Information Network Embedding." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/203.
Full textShen, Xiaobo, Shirui Pan, Weiwei Liu, Yew-Soon Ong, and Quan-Sen Sun. "Discrete Network Embedding." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/493.
Full textVu, Thuy, and D. Stott Parker. "Node Embeddings in Social Network Analysis." In ASONAM '15: Advances in Social Networks Analysis and Mining 2015. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2808797.2809408.
Full textZhang, Yao, Yun Xiong, Xiangnan Kong, and Yangyong Zhu. "Learning Node Embeddings in Interaction Graphs." In CIKM '17: ACM Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3132847.3132918.
Full textGuo, Xuan, Qiang Tian, Wang Zhang, Wenjun Wang, and Pengfei Jiao. "Learning Stochastic Equivalence based on Discrete Ricci Curvature." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/201.
Full text