Academic literature on the topic 'No-reference metrics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'No-reference metrics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "No-reference metrics"
Torres Vega, Maria, Vittorio Sguazzo, Decebal Constantin Mocanu, and Antonio Liotta. "An experimental survey of no-reference video quality assessment methods." International Journal of Pervasive Computing and Communications 12, no. 1 (April 4, 2016): 66–86. http://dx.doi.org/10.1108/ijpcc-01-2016-0008.
Full textPinson, Margaret H., Philip J. Corriveau, Mikołaj Leszczuk, and Michael Colligan. "Open Software Framework for Collaborative Development of No Reference Image and Video Quality Metrics." Electronic Imaging 2020, no. 11 (January 26, 2020): 92–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.11.hvei-092.
Full textWoodard, Jeffrey P., and Monica P. Carley-Spencer. "No-Reference Image Quality Metrics for Structural MRI." Neuroinformatics 4, no. 3 (2006): 243–62. http://dx.doi.org/10.1385/ni:4:3:243.
Full textCao, Zhipeng, Zhenzhong Wei, and Guangjun Zhang. "A No-Reference Sharpness Metric Based on Structured Ringing for JPEG2000 Images." Advances in Optical Technologies 2014 (June 24, 2014): 1–13. http://dx.doi.org/10.1155/2014/295615.
Full textLE CALLET, P. "No Reference and Reduced Reference Video Quality Metrics for End to End QoS Monitoring." IEICE Transactions on Communications E89-B, no. 2 (February 1, 2006): 289–96. http://dx.doi.org/10.1093/ietcom/e89-b.2.289.
Full textRubel, Andrii, Oleg Ieremeiev, Vladimir Lukin, Jarosław Fastowicz, and Krzysztof Okarma. "Combined No-Reference Image Quality Metrics for Visual Quality Assessment Optimized for Remote Sensing Images." Applied Sciences 12, no. 4 (February 14, 2022): 1986. http://dx.doi.org/10.3390/app12041986.
Full textWang, Hui, Xiaojuan Hu, Hui Xu, Shiyin Li, and Zhaolin Lu. "No-Reference Quality Assessment Method for Blurriness of SEM Micrographs with Multiple Texture." Scanning 2019 (June 2, 2019): 1–15. http://dx.doi.org/10.1155/2019/4271761.
Full textLiu, Xinwei, Marius Pedersen, and Christophe Charrier. "Performance evaluation of no-reference image quality metrics for face biometric images." Journal of Electronic Imaging 27, no. 02 (March 2, 2018): 1. http://dx.doi.org/10.1117/1.jei.27.2.023001.
Full textGu, Ke, Guangtao Zhai, Xiaokang Yang, and Wenjun Zhang. "No-Reference Stereoscopic IQA Approach: From Nonlinear Effect to Parallax Compensation." Journal of Electrical and Computer Engineering 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/436031.
Full textYe, Zhongchang, Xin Ye, and Zhonghua Zhao. "Hybrid No-Reference Quality Assessment for Surveillance Images." Information 13, no. 12 (December 16, 2022): 588. http://dx.doi.org/10.3390/info13120588.
Full textDissertations / Theses on the topic "No-reference metrics"
MARINI, FABRIZIO. "Content based no-reference image quality metrics." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/29794.
Full textSilva, Alexandre Fieno da. "No-reference video quality assessment model based on artifact metrics for digital transmission applications." reponame:Repositório Institucional da UnB, 2017. http://repositorio.unb.br/handle/10482/24733.
Full textSubmitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-06-22T19:03:58Z No. of bitstreams: 1 2017_AlexandreFienodaSilva.pdf: 5179649 bytes, checksum: de1d53930e22f809bd34322d5c5270d0 (MD5)
Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-10-05T17:04:26Z (GMT) No. of bitstreams: 1 2017_AlexandreFienodaSilva.pdf: 5179649 bytes, checksum: de1d53930e22f809bd34322d5c5270d0 (MD5)
Made available in DSpace on 2017-10-05T17:04:26Z (GMT). No. of bitstreams: 1 2017_AlexandreFienodaSilva.pdf: 5179649 bytes, checksum: de1d53930e22f809bd34322d5c5270d0 (MD5) Previous issue date: 2017-10-05
Um dos principais fatores para a redução da qualidade do conteúdo visual, em sistemas de imagem digital, são a presença de degradações introduzidas durante as etapas de processamento de sinais. Contudo, medir a qualidade de um vídeo implica em comparar direta ou indiretamente um vídeo de teste com o seu vídeo de referência. Na maioria das aplicações, os seres humanos são o meio mais confiável de estimar a qualidade de um vídeo. Embora mais confiáveis, estes métodos consomem tempo e são difíceis de incorporar em um serviço de controle de qualidade automatizado. Como alternativa, as métricas objectivas, ou seja, algoritmos, são geralmente usadas para estimar a qualidade de um vídeo automaticamente. Para desenvolver uma métrica objetiva é importante entender como as características perceptuais de um conjunto de artefatos estão relacionadas com suas forças físicas e com o incômodo percebido. Então, nós estudamos as características de diferentes tipos de artefatos comumente encontrados em vídeos comprimidos (ou seja, blocado, borrado e perda-de-pacotes) por meio de experimentos psicofísicos para medir independentemente a força e o incômodo desses artefatos, quando sozinhos ou combinados no vídeo. Nós analisamos os dados obtidos desses experimentos e propomos vários modelos de qualidade baseados nas combinações das forças perceptuais de artefatos individuais e suas interações. Inspirados pelos resultados experimentos, nós propomos uma métrica sem-referência baseada em características extraídas dos vídeos (por exemplo, informações DCT, a média da diferença absoluta entre blocos de uma imagem, variação da intensidade entre pixels vizinhos e atenção visual). Um modelo de regressão não-linear baseado em vetores de suporte (Support Vector Regression) é usado para combinar todas as características e estimar a qualidade do vídeo. Nossa métrica teve um desempenho muito melhor que as métricas de artefatos testadas e para algumas métricas com-referência (full-reference).
The main causes for the reducing of visual quality in digital imaging systems are the unwanted presence of degradations introduced during processing and transmission steps. However, measuring the quality of a video implies in a direct or indirect comparison between test video and reference video. In most applications, psycho-physical experiments with human subjects are the most reliable means of determining the quality of a video. Although more reliable, these methods are time consuming and difficult to incorporate into an automated quality control service. As an alternative, objective metrics, i.e. algorithms, are generally used to estimate video quality quality automatically. To develop an objective metric, it is important understand how the perceptual characteristics of a set of artifacts are related to their physical strengths and to the perceived annoyance. Then, to study the characteristics of different types of artifacts commonly found in compressed videos (i.e. blockiness, blurriness, and packet-loss) we performed six psychophysical experiments to independently measure the strength and overall annoyance of these artifact signals when presented alone or in combination. We analyzed the data from these experiments and proposed several models for the overall annoyance based on combinations of the perceptual strengths of the individual artifact signals and their interactions. Inspired by experimental results, we proposed a no-reference video quality metric based in several features extracted from the videos (e.g. DCT information, cross-correlation of sub-sampled images, average absolute differences between block image pixels, intensity variation between neighbouring pixels, and visual attention). A non-linear regression model using a support vector (SVR) technique is used to combine all features to obtain an overall quality estimate. Our metric performed better than the tested artifact metrics and for some full-reference metrics.
Hettiarachchi, Don Lahiru Nirmal Manikka. "An Accelerated General Purpose No-Reference Image Quality Assessment Metric and an Image Fusion Technique." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1470048998.
Full textHeadlee, Jonathan Michael. "A No-reference Image Enhancement Quality Metric and Fusion Technique." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1428755761.
Full textMorais, Dário Daniel Ribeiro. "A hybrid no-reference video quality metric for digital transmission applincatios." reponame:Repositório Institucional da UnB, 2017. http://repositorio.unb.br/handle/10482/23601.
Full textSubmitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-05-26T21:27:49Z No. of bitstreams: 1 2017_DarioDanielRibeiroMorais.pdf: 11590245 bytes, checksum: 2daecd1489fc94cb4c8afb7736e1181f (MD5)
Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-05-29T23:07:11Z (GMT) No. of bitstreams: 1 2017_DarioDanielRibeiroMorais.pdf: 11590245 bytes, checksum: 2daecd1489fc94cb4c8afb7736e1181f (MD5)
Made available in DSpace on 2017-05-29T23:07:11Z (GMT). No. of bitstreams: 1 2017_DarioDanielRibeiroMorais.pdf: 11590245 bytes, checksum: 2daecd1489fc94cb4c8afb7736e1181f (MD5) Previous issue date: 2017-05-29
Este trabalho visa desenvolver uma métrica híbrida de qualidade de vídeo sem referência para aplicações de transmissão digital, que leva em consideração três tipos de artefatos: perda de pacotes, blocado e borrado. As características desses artefatos são extraídas a partir das sequências de vídeo a fim de quantificar a força desses artefatos. A avaliação de perda de pacotes é dividida em 2 etapas: detecção e medição. As avaliações de blocado e borrado seguem referências da literatura. Depois de obter as características dos três tipos de artefatos, um processo de aprendizado de máquina (SVR) é utilizado para estimar a nota de qualidade prevista a partir das características extraídas. Os resultados obtidos com a métrica proposta foram comparados com os resultados obtidos com outras três métricas disponíveis na literatura (duas métricas NR de perda de pacotes e 1 métrica FR) e eles são promissores. A métrica proposta é cega, rápida e confiável para ser usada em cenários em tempo real.
This work aims to develop a hybrid no-reference video quality metric for digital transmission applications, which takes into account three types of artifacts: packet-loss, blockiness and bluriness. Features are extracted from the video sequences in order to quantity the strength of these three artifacts. The assessment of the packet-loss strength is performed in 2 stages: detection and measurement. The assessment of the strength of blockiness and blussiness follow references from literature. After obtaining the features from these three types of artifacts, a machine learning algorithm ( the support vector regression technique), is used to estimate the predicted quality score from the extracted features. The results obtained with the proposed metric were compared with the results obtained with three other metrics available in the literature (two NR packet-loss metrics and one FR metric). The proposed metric is blind, fast, and reliable to be used in real-time scenarios.
Fiche, Cécile. "Repousser les limites de l'identification faciale en contexte de vidéo-surveillance." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENT005/document.
Full textThe person identification systems based on face recognition are becoming increasingly widespread and are being used in very diverse applications, particularly in the field of video surveillance. In this context, the performance of the facial recognition algorithms largely depends on the image acquisition context, especially because the pose can vary, but also because the acquisition methods themselves can introduce artifacts. The main issues are focus imprecision, which can lead to blurred images, or the errors related to compression, which can introduce the block artifact. The work done during the thesis focuses on facial recognition in images taken by video surveillance cameras, in cases where the images contain blur or block artifacts or show various poses. First, we are proposing a new approach that allows to significantly improve facial recognition in images with high blur levels or with strong block artifacts. The method, which makes use of specific noreference metrics, starts with the evaluation of the quality level of the input image and then adapts the training database of the recognition algorithms accordingly. Second, we have focused on the facial pose estimation. Normally, it is very difficult to recognize a face in an image taken from another viewpoint than the frontal one and the majority of facial identification algorithms which are robust to pose variation need to know the pose in order to achieve a satisfying recognition rate in a relatively short time. We have therefore developed a fast and satisfying pose estimation method based on recent recognition techniques
Leite, Adriane de Oliveira. "Material complementar para o professor da rede SESI-SP de ensino : semelhança e software GeoGebra." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/7578.
Full textApproved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-28T19:38:02Z (GMT) No. of bitstreams: 1 DissAOL.pdf: 6820225 bytes, checksum: 00793d2a933ccdc18ce28c12bf53f7ac (MD5)
Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-28T19:38:13Z (GMT) No. of bitstreams: 1 DissAOL.pdf: 6820225 bytes, checksum: 00793d2a933ccdc18ce28c12bf53f7ac (MD5)
Made available in DSpace on 2016-09-28T19:43:11Z (GMT). No. of bitstreams: 1 DissAOL.pdf: 6820225 bytes, checksum: 00793d2a933ccdc18ce28c12bf53f7ac (MD5) Previous issue date: 2015-10-05
Não recebi financiamento
This research aims to propose activities for teachers using the Geogebra software, especially for teachers from the SESI-SP School Network in order to assist them in the teaching methodology, with teachers' work plan and, in addition, aiming to more significant and dynamic classes, in order to allow students reach their teaching and learning expectations, formulate valid arguments, make conjectures and justify their reasoning. The activities were applied by teachers of SESI-SP School Network to the students of 9th grade of elementary school, in anticipation of teaching and learning through “Similarity”, addressing Theorem of Thales, Metrics Relations in the Rectangle Triangle and Pythagoras Theorem. The results were analyzed and discussed, reporting the challenges and conclusions raised by the students during the activities while working with the Geogebra software and also based on the feedback provided by the teachers and the opinion of the analysts from SESI-SP School Network.
Esta pesquisa tem como objetivo principal propor atividades para os professores utilizando o software Geogebra, principalmente para os docentes da rede SESI-SP de Ensino, a fim de auxiliá-los na metodologia de ensino, no plano de trabalho, visando uma aula mais significativa e dinâmica, para que seus alunos atinjam as expectativas de ensino e aprendizagem, formulem argumentos válidos, façam conjecturas e justifiquem seus raciocínios. As atividades foram aplicadas por professores da rede SESI-SP de Ensino aos alunos do 9º ano do Ensino Fundamental, turma de 2014, na expectativa de ensino e aprendizagem de “Semelhança”, abordando Teorema de Tales, Relações Métricas no Triângulo Retângulo e Teorema de Pitágoras. Os resultados foram analisados e discutidos, relatando as dificuldades e conclusões apresentadas pelos alunos em desenvolver as atividades trabalhando com o software Geogebra, baseado nas devolutivas dos professores envolvidos e o parecer feito pelos analistas educacionais da Rede SESI-SP de Ensino.
de, Silva Manawaduge Supun Samudika. "An Approach to Utilize a No-Reference Image Quality Metric and Fusion Technique for the Enhancement of Color Images." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1470049079.
Full textNordeng, Eirik Tørud. "Video metric measurements in an FPGA for use in objective no-reference video quality analysis." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22706.
Full textZach, Ondřej. "Nástroje pro měření kvality videosekvencí bez reference." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-219973.
Full textBooks on the topic "No-reference metrics"
Soghier, Lamia, Katherine Pham, and Sara Rooney, eds. Reference Range Values for Pediatric Care. American Academy of Pediatrics, 2014. http://dx.doi.org/10.1542/9781581108545.
Full textDE, Indrajit. Integrated Approach to Determination of Quality Metric for No-Reference Images. Independently Published, 2019.
Find full textBook chapters on the topic "No-reference metrics"
Marrugo, Andrés G., María S. Millán, Gabriel Cristóbal, Salvador Gabarda, and Héctor C. Abril. "No-reference Quality Metrics for Eye Fundus Imaging." In Computer Analysis of Images and Patterns, 486–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23672-3_59.
Full textMamaev, Nikolay, Dmitry Yurin, and Andrey Krylov. "Image Ridge Denoising Using No-Reference Metric." In Advanced Concepts for Intelligent Vision Systems, 591–601. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70353-4_50.
Full textMolinero-Parejo, Ramón. "Geographically Weighted Methods to Validate Land Use Cover Maps." In Land Use Cover Datasets and Validation Tools, 255–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90998-7_13.
Full textCai, Zhaowei, Qi Zhang, and Longyin Wen. "No-Reference Image Quality Metric Based on Visual Quality Saliency." In Communications in Computer and Information Science, 455–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33506-8_56.
Full textDe, Indrajit, and Jaya Sil. "A Fuzzy Regression Analysis Based No Reference Image Quality Metric." In Advances in Intelligent Systems and Computing, 87–95. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11218-3_9.
Full textGaldran, Adrian, Pedro Costa, Alessandro Bria, Teresa Araújo, Ana Maria Mendonça, and Aurélio Campilho. "A No-Reference Quality Metric for Retinal Vessel Tree Segmentation." In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, 82–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00928-1_10.
Full textChen, Jianhua, Yongbing Zhang, Luhong Liang, Siwei Ma, Ronggang Wang, and Wen Gao. "A No-Reference Blocking Artifacts Metric Using Selective Gradient and Plainness Measures." In Advances in Multimedia Information Processing - PCM 2008, 894–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89796-5_108.
Full textCharrier, Christophe, Abdelhakim Saadane, and Christine Fernandez-Maloigne. "No-Reference Learning-Based and Human Visual-Based Image Quality Assessment Metric." In Image Analysis and Processing - ICIAP 2017, 245–57. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68548-9_23.
Full textXu, Jingwen, Yu Dong, Li Song, Rong Xie, Sixin Lin, and Yaqing Li. "Learning a No Reference Quality Assessment Metric for Encoded 4K-UHD Video." In Communications in Computer and Information Science, 321–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1194-0_28.
Full textChen, Shurong, and Huijuan Jiao. "No-Reference Video Monitoring Image Blur Metric Based on Local Gradient Structure Similarity." In Artificial Intelligence and Computational Intelligence, 328–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23887-1_41.
Full textConference papers on the topic "No-reference metrics"
Gasparini, Francesca, Mirko Guarnera, Fabrizio Marini, and Raimondo Schettini. "No-reference metrics for demosaicing." In IS&T/SPIE Electronic Imaging, edited by Susan P. Farnand and Frans Gaykema. SPIE, 2010. http://dx.doi.org/10.1117/12.839952.
Full textBo-Xin Zuo, Jin-Wen Tian, and De-Lie Ming. "A no-reference ringing metrics for images deconvolution." In 2008 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). IEEE, 2008. http://dx.doi.org/10.1109/icwapr.2008.4635757.
Full textHands, David, Damien Bayart, Andrew Davis, and Alex Bourret. "No reference perceptual quality metrics: approaches and limitations." In IS&T/SPIE Electronic Imaging, edited by Bernice E. Rogowitz and Thrasyvoulos N. Pappas. SPIE, 2009. http://dx.doi.org/10.1117/12.805386.
Full textЗвездакова, Анастасия, Anastasia Zvezdakova, Дмитрий Куликов, Dmitriy Kulikov, Денис Кондранин, Denis Kondranin, Дмитрий Ватолин, and Dmitriy Vatolin. "Barriers Towards No-reference Metrics Application to Compressed Video Quality Analysis: on the Example of No-reference Metric NIQE." In 29th International Conference on Computer Graphics, Image Processing and Computer Vision, Visualization Systems and the Virtual Environment GraphiCon'2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/graphicon-2019-2-22-27.
Full textPonomarenko, Nikolay, Oleg Eremeev, Vladimir Lukin, and Karen Egiazarian. "Statistical evaluation of no-reference image visual quality metrics." In 2010 2nd European Workshop on Visual Information Processing (EUVIP). IEEE, 2010. http://dx.doi.org/10.1109/euvip.2010.5699121.
Full textKatsavounidis, Ioannis. "Do we Really Need No-reference Video Quality Metrics?" In MM '20: The 28th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3423328.3423502.
Full textOuttas, Meriem, Lu Zhang, Olivier Deforges, Wassim Hamidouche, and Amina Serir. "Evaluation of No-reference quality metrics for Ultrasound liver images." In 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2018. http://dx.doi.org/10.1109/qomex.2018.8463299.
Full textZerman, Emiri, Gozde Bozdagi Akar, Baris Konuk, and Gokce Nur Yilmaz. "A comparative study on no-reference Video Quality Assessment metrics." In 2014 22nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2014. http://dx.doi.org/10.1109/siu.2014.6830594.
Full textMarini, Fabrizio, Claudio Cusano, and Raimondo Schettini. "No-reference metrics for JPEG: analysis and refinement using wavelets." In IS&T/SPIE Electronic Imaging, edited by Susan P. Farnand and Frans Gaykema. SPIE, 2010. http://dx.doi.org/10.1117/12.839863.
Full textBattisti, F., M. Carli, and A. Neri. "Image forgery detection by means of no-reference quality metrics." In IS&T/SPIE Electronic Imaging, edited by Nasir D. Memon, Adnan M. Alattar, and Edward J. Delp III. SPIE, 2012. http://dx.doi.org/10.1117/12.910778.
Full text