Journal articles on the topic 'NMR spectroscopy'

To see the other types of publications on this topic, follow the link: NMR spectroscopy.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'NMR spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gainov, Ramil R., Alexander V. Dooglav, Farit G. Vagizov, Ivan N. Pen'kov, Vladimir A. Golovanevskiy, Anna Yu Orlova, Il'ya A. Evlampiev, et al. "NQR/NMR and Mössbauer spectroscopy of sulfides: potential and versatility." European Journal of Mineralogy 25, no. 4 (December 20, 2013): 569–78. http://dx.doi.org/10.1127/0935-1221/2013/0025-2325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kovalenko, Anton D., Alexander A. Pavlov, Ilya D. Ustinovich, Alena S. Kalyakina, Alexander S. Goloveshkin, Łukasz Marciniak, Leonid S. Lepnev, et al. "Highly NIR-emitting ytterbium complexes containing 2-(tosylaminobenzylidene)-N-benzoylhydrazone anions: structure in solution and use for bioimaging." Dalton Transactions 50, no. 11 (2021): 3786–91. http://dx.doi.org/10.1039/d0dt03913f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Soroko, L. M. "Multipulse NMR spectroscopy." Uspekhi Fizicheskih Nauk 156, no. 12 (1988): 653. http://dx.doi.org/10.3367/ufnr.0156.198812b.0653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tycko, R., and S. J. Opella. "Overtone NMR spectroscopy." Journal of Chemical Physics 86, no. 4 (February 15, 1987): 1761–74. http://dx.doi.org/10.1063/1.452176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Evilia, Ronald F. "QUANTITATIVE NMR SPECTROSCOPY." Analytical Letters 34, no. 13 (September 30, 2001): 2227–36. http://dx.doi.org/10.1081/al-100107290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Soroko, L. M. "Multipulse NMR spectroscopy." Soviet Physics Uspekhi 31, no. 12 (December 31, 1988): 1043–59. http://dx.doi.org/10.1070/pu1988v031n12abeh005658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Listinsky, Jay J. "Biomolecular NMR Spectroscopy." Radiology 204, no. 1 (July 1997): 100. http://dx.doi.org/10.1148/radiology.204.1.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Knowles, Peter. "Biomolecular NMR spectroscopy." Biochemical Education 24, no. 1 (January 1996): 67. http://dx.doi.org/10.1016/s0307-4412(96)80024-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

George Ratcliffe, R., Albrecht Roscher, and Yair Shachar-Hill. "Plant NMR spectroscopy." Progress in Nuclear Magnetic Resonance Spectroscopy 39, no. 4 (December 2001): 267–300. http://dx.doi.org/10.1016/s0079-6565(01)00035-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kupče, Eriks, Toshiaki Nishida, and Ray Freeman. "Hadamard NMR spectroscopy." Progress in Nuclear Magnetic Resonance Spectroscopy 42, no. 3-4 (August 2003): 95–122. http://dx.doi.org/10.1016/s0079-6565(03)00022-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Penner, Glenn H., and Xiaolong Liu. "Silver NMR spectroscopy." Progress in Nuclear Magnetic Resonance Spectroscopy 49, no. 2 (September 2006): 151–67. http://dx.doi.org/10.1016/j.pnmrs.2006.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kupče, Eriks, and Ray Freeman. "Hyperdimensional NMR spectroscopy." Progress in Nuclear Magnetic Resonance Spectroscopy 52, no. 1 (January 2008): 22–30. http://dx.doi.org/10.1016/j.pnmrs.2007.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Howard, Mark J. "Protein NMR spectroscopy." Current Biology 8, no. 10 (May 1998): R331—R333. http://dx.doi.org/10.1016/s0960-9822(98)70214-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Munowitz, M. "13C NMR spectroscopy." TrAC Trends in Analytical Chemistry 8, no. 3 (March 1989): 117. http://dx.doi.org/10.1016/0165-9936(89)85011-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Levitt, Malcolm H., and Thomas A. Frenkiel. "4470014 NMR spectroscopy." Magnetic Resonance Imaging 3, no. 1 (January 1985): ii—iii. http://dx.doi.org/10.1016/0730-725x(85)90027-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kupče, Ēriks, and Ray Freeman. "Hyperdimensional NMR Spectroscopy." Journal of the American Chemical Society 128, no. 18 (May 2006): 6020–21. http://dx.doi.org/10.1021/ja0609598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ingwal, Joanne S., and Robert G. Weiss. "31P NMR spectroscopy." Trends in Cardiovascular Medicine 3, no. 1 (January 1993): 29–37. http://dx.doi.org/10.1016/1050-1738(93)90025-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hinton, J. F., K. R. Metz, and R. W. Briggs. "Thallium NMR spectroscopy." Progress in Nuclear Magnetic Resonance Spectroscopy 20, no. 5 (January 1988): 423–513. http://dx.doi.org/10.1016/0079-6565(88)80005-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lickiss, Paul D. "Modern NMR Spectroscopy." Journal of Organometallic Chemistry 332, no. 3 (October 1987): C21. http://dx.doi.org/10.1016/0022-328x(87)85108-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mikhalev, V. A. "99Tc NMR Spectroscopy." Radiochemistry 47, no. 4 (July 2005): 319–33. http://dx.doi.org/10.1007/s11137-005-0097-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Frahm, J. "Why NMR spectroscopy?" NMR in Biomedicine 2, no. 5-6 (December 1989): v—vi. http://dx.doi.org/10.1002/nbm.1940020502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nicolay, Klaas, Kees P. J. Braun, Robin A. de Graaf, Rick M. Dijkhuizen, and Marijn J. Kruiskamp. "Diffusion NMR spectroscopy." NMR in Biomedicine 14, no. 2 (2001): 94–111. http://dx.doi.org/10.1002/nbm.686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hecke, Paul Van, and Sabine Van Huffel. "NMR spectroscopy quantitation." NMR in Biomedicine 14, no. 4 (2001): 223. http://dx.doi.org/10.1002/nbm.696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cory, David. "NMR spectroscopy techniques." Concepts in Magnetic Resonance 9, no. 6 (1997): 431–32. http://dx.doi.org/10.1002/(sici)1099-0534(1997)9:6<431::aid-cmr4>3.0.co;2-#.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Separovic, Frances. "Biological NMR spectroscopy." Concepts in Magnetic Resonance 10, no. 1 (1998): 57–58. http://dx.doi.org/10.1002/(sici)1099-0534(1998)10:1<57::aid-cmr5>3.0.co;2-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Stoica, Petre, and Tomas Sundin. "Nonparametric NMR Spectroscopy." Journal of Magnetic Resonance 152, no. 1 (September 2001): 57–69. http://dx.doi.org/10.1006/jmre.2001.2377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hinton, J. F. "Thallium NMR spectroscopy." Magnetic Resonance in Chemistry 25, no. 8 (August 1987): 659–69. http://dx.doi.org/10.1002/mrc.1260250802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ordidge, Roger J. "4906932 NMR spectroscopy and NMR imaging." Magnetic Resonance Imaging 9, no. 3 (January 1991): X. http://dx.doi.org/10.1016/0730-725x(91)90478-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Takeda, Kazuyuki, Youta Kobayashi, Yasuto Noda, and K. Takegoshi. "Inner-product NMR spectroscopy: A variant of covariance NMR spectroscopy." Journal of Magnetic Resonance 297 (December 2018): 146–51. http://dx.doi.org/10.1016/j.jmr.2018.10.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pelzer, Stefanie, Beate Neumann, Hans-Georg Stammler, Nikolai Ignat’ev, Reint Eujen, and Berthold Hoge. "Synthesis and Characterization of Tetrakis(pentafluoroethyl)germane." Synthesis 49, no. 11 (May 3, 2017): 2389–93. http://dx.doi.org/10.1055/s-0036-1589005.

Full text
Abstract:
This paper describes the synthesis and comprehensive characterization of tetrakis(pentafluoroethyl)germane. In addition to a complete NMR spectroscopic characterization, including the rarely used 73Ge NMR spectroscopy, Ge(C2F5)4 was studied by IR spectroscopy, mass spectrometry as well as X-ray diffraction analysis. A 73Ge NMR investigation as well as an X-ray diffraction study of the related germane Ge(CF3)4 are also included.
APA, Harvard, Vancouver, ISO, and other styles
31

Nascimento, Paloma Andrade Martins, Paulo Lopes Barsanelli, Ana Paula Rebellato, Juliana Azevedo Lima Pallone, Luiz Alberto Colnago, and Fabíola Manhas Verbi Pereira. "Time-Domain Nuclear Magnetic Resonance (TD-NMR) and Chemometrics for Determination of Fat Content in Commercial Products of Milk Powder." Journal of AOAC INTERNATIONAL 100, no. 2 (March 1, 2017): 330–34. http://dx.doi.org/10.5740/jaoacint.16-0408.

Full text
Abstract:
Abstract This study shows the use of time-domain (TD)-NMR transverse relaxation (T2) data and chemometrics in the nondestructive determination of fat content for powdered food samples such as commercial dried milk products. Most proposed NMR spectroscopy methods for measuring fat content correlate free induction decay or echo intensities with the sample's mass. The need for the sample's mass limits the analytical frequency of NMR determination, because weighing the samples is an additional step in this procedure. Therefore, the method proposed here is based on a multivariate model of T2 decay, measured with Carr-Purcell-Meiboom-Gill pulse sequence and reference values of fat content. The TD-NMR spectroscopy method shows high correlation (r = 0.95) with the lipid content, determined by the standard extraction method of Bligh and Dyer. For comparison, fat content determination was also performed using a multivariate model with near-IR (NIR) spectroscopy, which is also a nondestructive method. The advantages of the proposed TD-NMR methodare that it (1) minimizes toxic residue generation, (2) performs measurements with high analytical frequency (a few seconds per analysis), and (3) does not require sample preparation (such as pelleting, needed for NIR spectroscopy analyses) or weighing the samples.
APA, Harvard, Vancouver, ISO, and other styles
32

Gunawan, Ramdhan, and Asep Bayu Dani Nandiyanto. "How to Read and Interpret 1H-NMR and 13C-NMR Spectrums." Indonesian Journal of Science and Technology 6, no. 2 (May 15, 2021): 267–98. http://dx.doi.org/10.17509/ijost.v6i2.34189.

Full text
Abstract:
Nuclear magnetic resonance spectroscopy or NMR is a chemical instrument that can be used to evaluate the structure of a chemical compound other than FTIR, GC-MS, and HPLC. NMR spectroscopy commonly used for compound analysis is 1H-NMR and 13C-NMR. Techniques can be used to determine the structure conformation, the number of protons, and the number of carbons in the structure of a chemical compound. So far, there have been many publications related to the use of this spectroscopic technique. However, the steps in reading and interpreting the spectra of both 1H-NMR and 13C-NMR are not described in detail. Thus, in this paper, we described the steps in reading and interpreting the 1H-NMR and 13C-NMR spectra based on the level of difficulties: (1) simple compounds, (2) fairly complex compounds, (3) more complex compounds, and (4) very complex compounds.
APA, Harvard, Vancouver, ISO, and other styles
33

Pandiselvam, Ravi, Rathnakumar Kaavya, Sergio I. Martinez Monteagudo, V. Divya, Surangna Jain, Anandu Chandra Khanashyam, Anjineyulu Kothakota, et al. "Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut (Cocos nucifera L.)." Molecules 27, no. 10 (May 19, 2022): 3250. http://dx.doi.org/10.3390/molecules27103250.

Full text
Abstract:
The number of food frauds in coconut-based products is increasing due to higher consumer demands for these products. Rising health consciousness, public awareness and increased concerns about food safety and quality have made authorities and various other certifying agencies focus more on the authentication of coconut products. As the conventional techniques for determining the quality attributes of coconut are destructive and time-consuming, non-destructive testing methods which are accurate, rapid, and easy to perform with no detrimental sampling methods are currently gaining importance. Spectroscopic methods such as nuclear magnetic resonance (NMR), infrared (IR)spectroscopy, mid-infrared (MIR)spectroscopy, near-infrared (NIR) spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy (RS) are gaining in importance for determining the oxidative stability of coconut oil, the adulteration of oils, and the detection of harmful additives, pathogens, and toxins in coconut products and are also employed in deducing the interactions in food constituents, and microbial contaminations. The objective of this review is to provide a comprehensive analysis on the various spectroscopic techniques along with different chemometric approaches for the successful authentication and quality determination of coconut products. The manuscript was prepared by analyzing and compiling the articles that were collected from various databases such as PubMed, Google Scholar, Scopus and ScienceDirect. The spectroscopic techniques in combination with chemometrics were shown to be successful in the authentication of coconut products. RS and NMR spectroscopy techniques proved their utility and accuracy in assessing the changes in coconut oil’s chemical and viscosity profile. FTIR spectroscopy was successfully utilized to analyze the oxidation levels and determine the authenticity of coconut oils. An FT-NIR-based analysis of various coconut samples confirmed the acceptable levels of accuracy in prediction. These non-destructive methods of spectroscopy offer a broad spectrum of applications in food processing industries to detect adulterants. Moreover, the combined chemometrics and spectroscopy detection method is a versatile and accurate measurement for adulterant identification.
APA, Harvard, Vancouver, ISO, and other styles
34

Borba, A., J. P. Vareda, L. Durães, A. Portugal, and P. N. Simões. "Spectroscopic characterization of silica aerogels prepared using several precursors – effect on the formation of molecular clusters." New Journal of Chemistry 41, no. 14 (2017): 6742–59. http://dx.doi.org/10.1039/c7nj01082f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Szarek, Walter A., B. Mario Pinto, and Masaharu Iwakawa. "Nucleoside analogs involving modifications in the carbohydrate ring: nuclear magnetic resonance spectroscopic studies." Canadian Journal of Chemistry 63, no. 8 (August 1, 1985): 2162–68. http://dx.doi.org/10.1139/v85-355.

Full text
Abstract:
The concomitant use of 1H nmr and 13C nmr spectroscopy as a probe of structure, stereochemistry, and conformation of several nucleoside analogs derived from 1-oxa-4-thiacyclohexane is described. The 1H nmr spectroscopic properties of an acyclic nucleoside analog derived from uridine are also described.
APA, Harvard, Vancouver, ISO, and other styles
36

OHUCHI, Muneki, and Shizue KOHNO. "Three-dimensional NMR spectroscopy." Journal of Synthetic Organic Chemistry, Japan 48, no. 6 (1990): 577–86. http://dx.doi.org/10.5059/yukigoseikyokaishi.48.577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gronenborn, Angela M., and Tatyana Polenova. "Introduction: Biomolecular NMR Spectroscopy." Chemical Reviews 122, no. 10 (May 25, 2022): 9265–66. http://dx.doi.org/10.1021/acs.chemrev.2c00142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Holzgrabe, Ulrike, and Michael Bernstein. "Preface: Quantitative NMR spectroscopy." Journal of Pharmaceutical and Biomedical Analysis 215 (June 2022): 114787. http://dx.doi.org/10.1016/j.jpba.2022.114787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Vosegaard, Thomas. "Single-crystal NMR spectroscopy." Progress in Nuclear Magnetic Resonance Spectroscopy 123 (April 2021): 51–72. http://dx.doi.org/10.1016/j.pnmrs.2021.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

MITSUMORI, Fumiyuki. "In vivo NMR spectroscopy." Journal of Japan Oil Chemists' Society 38, no. 10 (1989): 783–90. http://dx.doi.org/10.5650/jos1956.38.783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mamone, Salvatore, Nasrollah Rezaei-Ghaleh, Felipe Opazo, Christian Griesinger, and Stefan Glöggler. "Singlet-filtered NMR spectroscopy." Science Advances 6, no. 8 (February 2020): eaaz1955. http://dx.doi.org/10.1126/sciadv.aaz1955.

Full text
Abstract:
Selectively studying parts of proteins and metabolites in tissue with nuclear magnetic resonance promises new insights into molecular structures or diagnostic approaches. Nuclear spin singlet states allow the selection of signals from chemical moieties of interest in proteins or metabolites while suppressing background signal. This selection process is based on the electron-mediated coupling between two nuclear spins and their difference in resonance frequency. We introduce a generalized and versatile pulsed NMR experiment that allows populating singlet states on a broad scale of coupling patterns. This approach allowed us to filter signals from proton pairs in the Alzheimer’s disease–related b-amyloid 40 peptide and in metabolites in brain matter. In particular, for glutamine/glutamate, we have discovered a long-lived state in tissue without the typically required singlet sustaining by radiofrequency irradiation. We believe that these findings will open up new opportunities to study metabolites with a view on future in vivo applications.
APA, Harvard, Vancouver, ISO, and other styles
42

Warren, W., S. Mayr, D. Goswami, and A. West. "Laser-enhanced NMR spectroscopy." Science 255, no. 5052 (March 27, 1992): 1683–85. http://dx.doi.org/10.1126/science.1553555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Webb, G. A. "Chapter 2. NMR spectroscopy." Annual Reports Section "C" (Physical Chemistry) 89 (1992): 3. http://dx.doi.org/10.1039/pc9928900003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fesik, S. W. "Isotope-edited NMR spectroscopy." Nature 332, no. 6167 (April 1988): 865–66. http://dx.doi.org/10.1038/332865a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bachelard, Herman, and Ronnitte Badar-Goffer. "NMR Spectroscopy in Neurochemistry." Journal of Neurochemistry 61, no. 2 (October 5, 2006): 412–19. http://dx.doi.org/10.1111/j.1471-4159.1993.tb02141.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Parish, David M., and Thomas Szyperski. "Simultaneously Cycled NMR Spectroscopy." Journal of the American Chemical Society 130, no. 14 (April 2008): 4925–33. http://dx.doi.org/10.1021/ja711454e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

A. Salvatore, B. "Chapter 11. NMR Spectroscopy." Annual Reports Section "B" (Organic Chemistry) 94 (1998): 361. http://dx.doi.org/10.1039/oc094361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bai, Shi, Wei Wang, and Cecil Dybowski. "Solid State NMR Spectroscopy." Analytical Chemistry 82, no. 12 (June 15, 2010): 4917–24. http://dx.doi.org/10.1021/ac100761m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Song, Yi-Qiao, Andre Souza, Muthusamy Vembusubramanian, Yiqiao Tang, Kamilla Fellah, Ling Feng, and Stacy L. Reeder. "Multiphysics NMR correlation spectroscopy." Journal of Magnetic Resonance 322 (January 2021): 106887. http://dx.doi.org/10.1016/j.jmr.2020.106887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bharti, Santosh Kumar, and Raja Roy. "Quantitative 1H NMR spectroscopy." TrAC Trends in Analytical Chemistry 35 (May 2012): 5–26. http://dx.doi.org/10.1016/j.trac.2012.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography