Academic literature on the topic 'Nitrogen Fixation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nitrogen Fixation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nitrogen Fixation"
Nagiev, T. M., N. I. Ali-zadeh, L. M. Gasanova, I. T. Nagieva, Ch A. Mustafaeva, N. N. Malikova, A. A. Abdullaeva, and E. S. Bakhramov. "NITROGEN FIXATION AT CONJUGATED OXIDATION." Azerbaijan Chemical Journal, no. 2 (2018): 6–10. http://dx.doi.org/10.32737/0005-2531-2018-2-6-10.
Full textO'GARA, FERGAL. "Nitrogen Fixation." Biochemical Society Transactions 13, no. 3 (June 1, 1985): 639. http://dx.doi.org/10.1042/bst0130639a.
Full textWen-Yue Hsiung. "Nitrogen Fixation." Forest Ecology and Management 10, no. 4 (May 1985): 348–50. http://dx.doi.org/10.1016/0378-1127(85)90127-6.
Full textBecker, James Y., and Shlomit Avraham (Tsarfaty). "Nitrogen fixation." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 280, no. 1 (February 1990): 119–27. http://dx.doi.org/10.1016/0022-0728(90)87088-2.
Full textBecker, James Y., Shlomit Avraham (Tsarfaty), and Barry Posin. "Nitrogen fixation." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 230, no. 1-2 (August 1987): 143–53. http://dx.doi.org/10.1016/0022-0728(87)80138-9.
Full textBecker, James Y., and Barry Posin. "Nitrogen fixation." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 250, no. 2 (August 1988): 385–97. http://dx.doi.org/10.1016/0022-0728(88)85178-7.
Full textDavis, Lawrence C. "Fundamentals of nitrogen fixation an introduction to nitrogen fixation." Trends in Biochemical Sciences 12 (January 1987): 451–52. http://dx.doi.org/10.1016/0968-0004(87)90216-7.
Full textSmith, B. E. "Fertilizer fixation nitrogen fixation in plants." Trends in Biochemical Sciences 12 (January 1987): 36. http://dx.doi.org/10.1016/0968-0004(87)90018-1.
Full textSprent, J. I., and M. Alexander. "Biological Nitrogen Fixation." Journal of Applied Ecology 22, no. 2 (August 1985): 601. http://dx.doi.org/10.2307/2403193.
Full textMylona, Panagiota, Katharina Pawlowski, and Ton Bisseling. "Symbiotic Nitrogen Fixation." Plant Cell 7, no. 7 (July 1995): 869. http://dx.doi.org/10.2307/3870043.
Full textDissertations / Theses on the topic "Nitrogen Fixation"
Supeno. "Sonochemical fixation of nitrogen." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0016/MQ57783.pdf.
Full textSupeno, Carleton University Dissertation Chemistry. "Sonochemical fixation of nitrogen." Ottawa, 2000.
Find full textKlawonn, Isabell. "Marine nitrogen fixation : Cyanobacterial nitrogen fixation and the fate of new nitrogen in the Baltic Sea." Doctoral thesis, Stockholms universitet, Institutionen för ekologi, miljö och botanik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-122080.
Full textAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.
H, Boström Kjärstin. "Nitrogen fixation among marine bacterioplankton." Doctoral thesis, Högskolan i Kalmar, Naturvetenskapliga institutionen, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hik:diva-24.
Full textÖstersjön är ett av världens största brackvattensystem. Den ekologiska balansen i detta hav är hotad på grund av övergödning. Mycket arbete har därför fokuserats på att reducera utsläppen av näringsämnen, speciellt kväve. Dessa ansträngningar kan dock motverkas av bakterier som har förmåga att omvandla luftens kväve till metaboliskt användbart ammonium (kvävefixering). På sommaren är Östersjöns primärproduktion begränsad av kväve, med följden att det årligen uppstår massiva blomningar av kvävefixerande bakterier, framför allt cyanobakterier. Dessa är främst Aphanizomenon och Nodularia, men inte endast de fototrofa cyanobakterierna har förutsättningar att fixera N2. NifH gener (genen som kodar för nitrogenas) bärs också av heterotrofa bakterioplankton, vilket har visats i studier i främst Atlanten och Stilla havet. Med hjälp av två olika odlingsmetoder lyckades vi isolera heterotrofa kvävefixerande bakterier tillhörande klassen γ-proteobakteria från Östersjön. Svårigheten med att finna dessa bakterier ligger i att de kräver en miljö med mycket låg syrehalt för att kunna fixera kväve. Resultaten från denna studie ledde oss vidare till att undersöka vilka organismer som uttrycker nifH genen (och då troligen även fixerar kväve) i Östersjön. En av de bakterier som isolerats kunde påvisas med Realtids PCR i ett relativt stort antal (3 x 104 nifH genkopior per liter) vid en av de ursprungliga provtagningsstationerna. För att söka rätt på de olika organismtyper som uttrycker nifH skapades ett klonbibliotek baserat på mRNA extraherat från havsvatten. Det visade sig då att alla de närmare 100 kloner som sekvenserades tillhörde antingen Aphanizominon eller Nodularia. De heterotrofa bakteriernas nifH genuttryck var troligen i jämförelse med dessa cyanobakterier alltför lågt för att kunna detekteras. Realtids PCR mätningar av Nodularias nifH genuttryck visade på en stor variation mellan de olika provtagningsstationerna samt mellan de olika provtagningstillfällena. Vi fann dock en kraftig ökning under juli med en nedgång igen i augusti. En dygnscykelstudie visade att Nodularia nifH genuttrycket ökade under förmiddagen med en topp mitt på dagen för att sedan minska igen. Detta troligen med anledning av att den energikrävande kvävefixeringsprocessen sker under de ljusa timmarna då cellen får energi från fotosyntesen. I de molekylärbiologiska metoderna som används för att få information om identitet och aktivitet hos skilda organismer krävs att DNA och RNA kan extraheras från prover tagna i naturliga vattenmiljöer. Även om antalet bakterier tillsynes är högt, så är mängden DNA och RNA per liter havsvatten relativt låg, därför krävs ett väl fungerande protokoll för denna extraktion. I en inledande studie i denna avhandling optimerades en metod för att utvinna DNA. Ett antal sådana protokoll finns publicerade men dessa har ofta lågt utbyte. Det nya protokollet har hög effektivitet, vilket gör att små provvolymer kan användas (2 ml jämfört med tidigare flera liter) och därmed ökar hanterbarheten. Vi visar i denna studie att varje steg 7 i DNA-extraktionsprotokollet är viktigt för att ge en hög effektivitet. Detta protokoll kan med fördel användas som vägledning för många olika typer av studier. På grund av att många havsbakterier inte kan bilda kolonier och alltså inte växa på traditionella medier har det varit svårt att få en klar bild av artrikedomen. Molekylärbiologin har dock gjort det möjligt att identifiera bakterier med hjälp av 16S rRNA genen, en enorm mängd gensekvenser från världens alla hav har inkommit till den gemensamma databanken (GenBank). År 2002 gjordes en studie där man sammanställde informationen i denna databank, för att få en bild av artrikedomen i världshaven. Resultatet av denna studie var att det i världshaven fanns färre bakterietyper än vad många forskare har spekulerat i. I denna avhandlig har vi utfört en studie där vi gjorde en stor global provtagning för att se om denna undersökning överensstämde med den datainformativa. Provtagning från nio lokaliteter gjordes i de tempererade, tropiska och polarhaven. Ett genbibliotek från varje lokal gjordes och kloner sekvenserades. Resultatet visar i likhet med den datainformativa undersökningen på en begränsad artrikedom. 80% av gensekvenserna fanns redan i databanken, vilket tyder på att de flesta arter redan har blivit funna. Dessutom visade det sig att få av bakterierna återfanns på alla ställen och många återfanns endast på ett ställe. Utöver detta visade det sig att det fanns en ökad artrikedom ju närmare ekvatorn man kom, vilket tidigare har visats för större organismer. Studierna i denna avhandling har ökat förståelsen för hur sammansättningen av det kvävefixerande bakteriesamhället i Östersjön ser ut samt bidragit till diskussionen om den globala artrikedomen bland bakterioplakton och dess utbredning.
Crosswhite, F. S., and C. D. Crosswhite. "Nitrogen Fixation in Desert Legumes." University of Arizona (Tucson, AZ), 1988. http://hdl.handle.net/10150/609108.
Full textMonteiro, Fanny. "Mechanistic models of oceanic nitrogen fixation." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/53104.
Full textIncludes bibliographical references (p. 163-185).
Oceanic nitrogen fixation and biogeochemical interactions between the nitrogen, phosphorus and iron cycles have important implications for the control of primary production and carbon storage in the ocean. The biological process of nitrogen fixation is thought to be particularly important where the ocean is nitrogen limited and oligotrophic. This thesis examines some of the mechanisms responsible for the distribution, rates and temporal variability of nitrogen fixation and its geochemical signature in the modern ocean. I employ simple analytical theories and numerical models of ecosystems and biogeochemical cycles, and closely refer to direct observations of the phytoplanktonic community and geochemical tracers of the marine nitrogen cycle. Time-series observations of geochemical tracers and abundances of nitrogen fixers (or diazotrophs) in the northern subtropical gyres suggest variability in nitrogen fixation on interannual and longer timescales. I use a highly idealized, two-layer model of the nitrogen and phosphorus biogeochemistry and ecology of a subtropical gyre to explore the previously proposed hypothesis that such variability is regulated by an internal biogeochemical oscillator. I find, in certain parameter regimes, self-sustained oscillations in nitrogen fixation, community structure and biogeochemical cycles even with perfectly steady physical forcing. The period of the oscillations is strongly regulated by the exchange rate between the thermocline and mixed-layer waters, suggesting a period of several years to several decades for the North Pacific subtropical gyre regime, but would likely be shorter (only a year or so) for the North Atlantic Ocean.
(cont.) Geochemical tracers such as DINxs (=NO3--16PO3-) measure the oceanic departure from the Redfield ratio. DINx, is often used to estimate the rate of nitrogen fixation in the ocean, by quantifying the tracer accumulation along isopycnals. However this tracer reflects an interwoven set of processes including nitrogen fixation, but also denitrification, atmospheric and riverine sources, differential remineralization and complex transport pathways. I examine analytical solutions of the prognostic equation of DINx, and an idealized three-dimensional model of the basin-scale circulation, biogeochemical cycles and ecology of the North Atlantic Ocean. The two approaches demonstrate that the observations of a subsurface maximum in the North Atlantic Ocean and the temporal variability at the station BATS of DINxs can be explained simply by preferential remineralization of organic phosphorus relative to nitrogen. A further analysis reveals that the current geochemical estimates based on inorganic forms of phosphorus and nitrogen underestimate integrated nitrogen fixation rates by a factor of two to six, by neglecting the preferential remineralization effect. Most current understanding of oceanic nitrogen fixation is based on the Trichodesmium, though unicellular cyanobacteria, diatom-diazotroph associations (DDA) and heterotrophic bacteria might be as important in adding nitrogen into the ocean. I employ a self-assembling global ocean ecosystem model to simulate diverse phytoplanktonic diazotrophs in the global ocean and examine how temperature, oligotrophy, iron and phosphate limitations influence the global marine diazotroph distribution.
(cont.) Analogs of Trichodesmium, unicellular diazotrophs and DDA are successful in the model, showing very similar distributions with observations. The total diazotrophic population is distributed over most of the oligotrophic warm (sub)tropical waters in the model. The model demonstrates that temperature is not the primary control, but suggests instead that diazotroph biogeography is restricted to the low fixed nitrogen oceanic regions which have sufficient dissolved iron and phosphate. The theory of resource competition is used to map out regions of iron and phosphate regulation of diazotroph distribution. The theory suggests that diazotrophs are largely regulated by iron availability, in particular in the Pacific and Indian Oceans. The iron cycle is currently not well enough constrained to confidently predict the diazotroph distribution in global ocean models.
by Fanny Monteiro.
Ph.D.
Abdel, Magid H. M., P. W. Singleton, and J. W. Tavares. "Sesbania-Rhizobium Specificity and Nitrogen Fixation." University of Arizona (Tucson, AZ), 1988. http://hdl.handle.net/10150/609114.
Full textNagel, Eric Dale. "Nitrogen fixation in benthic microalgal mats." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/2092.
Full textThesis research directed by: Marine, Estuarine, Environmental Sciences Graduate Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Cheng, J. "Interactions between nitrogen fixation and alternative sources of nitrogen in Gloeothece." Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636244.
Full textMansur, Irdika. "Nitrogen uptake dynamics and biological nitrogen fixation in a silvopastoral system." Thesis, University of Canterbury. Department of Forestry, 1994. http://hdl.handle.net/10092/4243.
Full textBooks on the topic "Nitrogen Fixation"
Ribbe, Markus W., ed. Nitrogen Fixation. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-194-9.
Full textPolsinelli, M., R. Materassi, and M. Vincenzini, eds. Nitrogen Fixation. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3486-6.
Full textGresshoff, Peter M., L. Evans Roth, Gary Stacey, and William E. Newton, eds. Nitrogen Fixation. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-6432-0.
Full textNishibayashi, Yoshiaki, ed. Nitrogen Fixation. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57714-2.
Full textZehr, Jonathan P., and Douglas G. Capone. Marine Nitrogen Fixation. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67746-6.
Full textGraham, P. H., M. J. Sadowsky, and C. P. Vance, eds. Symbiotic Nitrogen Fixation. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1088-4.
Full textde Bruijn, Frans J., ed. Biological Nitrogen Fixation. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119053095.
Full textGary, Stacey, Evans Harold, and Burris Robert H, eds. Biological nitrogen fixation. New York: Chapman and Hall, 1991.
Find full textS, Stacey G., Burris Robert H. 1914-, and Evans H. J, eds. Biological nitrogen fixation. New York: Chapman & Hall, 1992.
Find full textSmith, Barry E., Raymond L. Richards, and William E. Newton, eds. Catalysts for Nitrogen Fixation. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-3611-8.
Full textBook chapters on the topic "Nitrogen Fixation"
Olivares, José. "Nitrogen Fixation." In Encyclopedia of Astrobiology, 1121–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1064.
Full textSprent, J. "Nitrogen fixation." In The Groundnut Crop, 255–80. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0733-4_8.
Full textOlivares, José. "Nitrogen Fixation." In Encyclopedia of Astrobiology, 1688–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1064.
Full textNair, P. K. Ramachandran. "Nitrogen fixation." In An Introduction to Agroforestry, 307–23. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1608-4_17.
Full textBonga, J. M., and P. von Aderkas. "Nitrogen fixation." In In Vitro Culture of Trees, 150. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8058-8_9.
Full textBurris, Robert H. "Nitrogen Fixation." In Terrestrial Ecosystems and Biodiversity, 321–24. Second edition. | Boca Raton: CRC Press, [2020] | Revised edition of: Encyclopedia of natural resources. [2014].: CRC Press, 2020. http://dx.doi.org/10.1201/9780429445651-41.
Full textGooch, Jan W. "Nitrogen Fixation." In Encyclopedic Dictionary of Polymers, 910. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14325.
Full textReitner, Joachim, and Volker Thiel. "Nitrogen Fixation." In Encyclopedia of Geobiology, 690. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-1-4020-9212-1_247.
Full textLack, Andrew, and David Evans. "Nitrogen fixation." In Plant Biology, 228–30. 2nd ed. London: Taylor & Francis, 2021. http://dx.doi.org/10.1201/9780203002902-68.
Full textOlivares, José, and Juan Sanjuán. "Nitrogen Fixation." In Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_1064-3.
Full textConference papers on the topic "Nitrogen Fixation"
Dekas, Anne E. "NITROGEN FIXATION IN DEEP-SEA SEDIMENTS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-306667.
Full textStephens, Ifan. "Electrochemical nitrogen fixation: lithium and beyond." In MATSUS Spring 2024 Conference. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.371.
Full textTsuji, Masatoshi, Y. Kawakami, A. Ashida, and K. Nitta. "Design of Nitrogen Fixation System for CEEF." In International Conference on Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951583.
Full textInoue, M., S. Iiyama, T. Numaguchi, K. Kikuchi, and K. Nitta. "Development of the Nitrogen Fixation System for CELSS." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/921238.
Full textKANG, LIHUA, and HAIBIN MA. "INTERACTION OF ASSOCIATIVE NITROGEN-FIXATION BACTERIA WITH EUCALYPTUS." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704504_0025.
Full textTsuji, Masatoshi, Takayuki Sakamoto, Akira Ashida, and Keiji Nitta. "Nitrogen Fixation System as a CELSS Subsystem for CEEF." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/961418.
Full textAljobeh, Zuhdi Y., Tiffany N. Kolba, Yacoub Aljobeh, and Dana Hinaman. "Impact of Autumn Olive Nitrogen-Fixation on Groundwater Nitrate Concentration." In World Environmental and Water Resources Congress 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479865.004.
Full textNatwora, Kaela E., and Cody Sheik. "COMPARISON OF NITROGEN FIXATION RATES ACROSS THE LAURENTIAN GREAT LAKES (LGL)." In 54th Annual GSA North-Central Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020nc-348018.
Full textWu, Sarah X., Bishal Thapa, Yuan Yuan, Robinson Ndeddy Aka, and Alia Nasir. "Optimization of a green plasma process for nitrogen fixation in water." In 2022 Houston, Texas July 17-20, 2022. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2022. http://dx.doi.org/10.13031/aim.202200908.
Full textTsuji, Masatoshi, Toru Numaguchi, Shigeo Iiyama, Katsutoshi Kikuchi, Keiji Nitta, and Akira Ashida. "Experimental Study of Nitrogen Fixation System in a Closed Ecological System." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/941409.
Full textReports on the topic "Nitrogen Fixation"
Paul J. Chirik. Understanding Nitrogen Fixation. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1041006.
Full textBurris, R. H. Enzymology of biological nitrogen fixation. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5403340.
Full textBurris, R. H. Enzymology of biological nitrogen fixation. Annual report. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/10138605.
Full textOkon, Yaacov, Robert Burris, and Yigal Henis. Biological Nitrogen Fixation in Grass-Azospirillom Association. United States Department of Agriculture, January 1985. http://dx.doi.org/10.32747/1985.7593407.bard.
Full textJames W Golden. Regulation of Development and Nitrogen Fixation in Anabaena. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/838436.
Full textGolden, James W. Regulation of Development and Nitrogen Fixation in Anabaena. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/939624.
Full textJurkevitch, Edouard, Carol Lauzon, Boaz Yuval, and Susan MacCombs. role of nitrogen-fixing bacteria in survival and reproductive success of Ceratitis capitata, the Mediterranean fruit fly. United States Department of Agriculture, September 2005. http://dx.doi.org/10.32747/2005.7695863.bard.
Full textCramer, Stephen. Support for the 19th International Congress on Nitrogen Fixation. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1418239.
Full textWestgate, Mark E., Gerald Sebuwufu, and Mercy K. Kabahuma. Enhancing Yield and Biological Nitrogen Fixation of Common Beans. Ames: Iowa State University, Digital Repository, 2012. http://dx.doi.org/10.31274/farmprogressreports-180814-203.
Full textKahn, Michael, Svetlana Yurgel, Aaron Ogden, Mahmoud Gargouri, Jeong-Jin Park, David Gang, Kelly Hagberg, et al. Unbalancing Symbiotic Nitrogen Fixation: Can We Make Effectiveness More Effective? Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1764578.
Full text