Academic literature on the topic 'Nitrogen catabolite repression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nitrogen catabolite repression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nitrogen catabolite repression"
Cooper, T. G., R. Rai, and H. S. Yoo. "Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae." Molecular and Cellular Biology 9, no. 12 (December 1989): 5440–44. http://dx.doi.org/10.1128/mcb.9.12.5440.
Full textCooper, T. G., R. Rai, and H. S. Yoo. "Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae." Molecular and Cellular Biology 9, no. 12 (December 1989): 5440–44. http://dx.doi.org/10.1128/mcb.9.12.5440-5444.1989.
Full textScazzocchio, Claudio, Victoria Gavrias, Beatriz Cubero, Cristina Panozzo, Martine Mathieu, and Béatrice Felenbok. "Carbon catabolite repression in Aspergillus nidulans: a review." Canadian Journal of Botany 73, S1 (December 31, 1995): 160–66. http://dx.doi.org/10.1139/b95-240.
Full textHofman-Bang, Jacob. "Nitrogen Catabolite Repression in Saccharomyces cerevisiae." Molecular Biotechnology 12, no. 1 (1999): 35–74. http://dx.doi.org/10.1385/mb:12:1:35.
Full textArst Jr., Herbert N. "Nitrogen metabolite repression in Aspergillus nidulans: an historical perspective." Canadian Journal of Botany 73, S1 (December 31, 1995): 148–52. http://dx.doi.org/10.1139/b95-238.
Full textBELTRAN, G., M. NOVO, N. ROZES, A. MAS, and J. GUILLAMON. "Nitrogen catabolite repression in during wine fermentations." FEMS Yeast Research 4, no. 6 (March 2004): 625–32. http://dx.doi.org/10.1016/j.femsyr.2003.12.004.
Full textShin, Byung-Sik, Soo-Keun Choi, Issar Smith, and Seung-Hwan Park. "Analysis of tnrA Alleles Which Result in a Glucose-Resistant Sporulation Phenotype in Bacillus subtilis." Journal of Bacteriology 182, no. 17 (September 1, 2000): 5009–12. http://dx.doi.org/10.1128/jb.182.17.5009-5012.2000.
Full textMilhomem Cruz-Leite, Vanessa Rafaela, Silvia Maria Salem-Izacc, Evandro Novaes, Bruno Junior Neves, Wesley de Almeida Brito, Lana O'Hara Souza Silva, Juliano Domiraci Paccez, et al. "Nitrogen Catabolite Repression in members of Paracoccidioides complex." Microbial Pathogenesis 149 (December 2020): 104281. http://dx.doi.org/10.1016/j.micpath.2020.104281.
Full textPalavecino, Marcos D., Susana R. Correa-García, and Mariana Bermúdez-Moretti. "Genes of Different Catabolic Pathways Are Coordinately Regulated by Dal81 in Saccharomyces cerevisiae." Journal of Amino Acids 2015 (September 17, 2015): 1–8. http://dx.doi.org/10.1155/2015/484702.
Full textPinedo, Catalina Arango, and Daniel J. Gage. "HPrK Regulates Succinate-Mediated Catabolite Repression in the Gram-Negative Symbiont Sinorhizobium meliloti." Journal of Bacteriology 191, no. 1 (October 17, 2008): 298–309. http://dx.doi.org/10.1128/jb.01115-08.
Full textDissertations / Theses on the topic "Nitrogen catabolite repression"
Fayyad, Kazan Mohammad. "Investigation of the molecular mechanisms controlling Nitrogen Catabolite Repression-sensitive gene expression in Saccharomyces cerevisiae." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209287.
Full textIn the first part of this work, we have shown that class C and D VPS (vacuolar protein sorting) components, involved in Golgi-to-vacuole vesicular trafficking, are required for intact Gat1 and Gln3 nuclear localization in response to TORC1-inhibiting rapamycin treatment or upon shifting cells from rich to poor nitrogen conditions. The requirements of Vps proteins for Gln3 function are media-specific: a requirement after rapamycin treatment was observed in minimal but not in rich medium. Moreover, we have seen that a significant fraction of Gat1, like Gln3, is associated with light intracellular membranes. These observations support the view that GATA factor regulation in response to nitrogen signals seems to occur at intracellular compartments.
In a second step, we confirmed an important role for the anabolic glutamate dehydrogenase (Gdh1) within NCR, through the control of Gat1 function. However, since we observed a strong correlation between the anabolic activity of Gdh1 and its NCR regulatory capacity, we do not exclude that an alteration of Gdh1-substrates or any other metabolite could be responsible for the phenotype exhibited by gdh1 mutants. We also showed that there is no simple and direct link between the intracellular levels of glutamine/glutamate (reported in the literature as signals for NCR), TORC1 activity and NCR. In conclusion, the mechanisms regulating the perception of the quality of the nitrogen sources are still not fully understood.
Several screens for multi-copy suppression of mutated phenotypes were conducted during this work and led to the identification of several elements (URE2, BAP2, STP2, GZF3 and KDX1) that could interfere with NCR-sensitive gene expression. Among these, the gene encoding the Kdx1 kinase was identified in two independent screens.
In the last part of this work, we uncovered a role for leucine in NCR signaling. We showed that the addition of leucine in the culture medium could impair Gat1-dependent expression of certain NCR genes, while leucine starvation had no effect at this level. The repressive effect of leucine appeared to involve elements of the SPS signaling pathway which is required for the induction of genes encoding amino acid transporters in response to extracellular amino acids. The mechanism(s) by which leucine regulates Gat1 function is still not fully clear and requires further investigation:La levure Saccharomyces cerevisiae adapte l’expression de ses gènes selon la disponibilité en azote dans son environnement au moyen d’un contrôle majeur appelé répression catabolique azotée (NCR, pour « nitrogen catabolite repression ». L’expression des gènes NCR est contrôlée par un régulateur négatif de type prion (Ure2) et quatre facteurs de transcription de type GATA :deux activateurs, Gat1 et Gln3 et deux répresseurs, Dal80 et Gzf3. Bien que le complexe TORC1 et les phosphatases qu’il régule soient impliquées dans la régulation NCR, le mécanisme précis par lequel la NCR se produit est loin d’être compris.
Dans la première partie de ce travail, nous avons montré que les composants VPS (vacuolar protein sorting) de classe C et D, impliqués dans le trafic vésiculaire entre le Golgi et la vacuole, sont requis pour que Gat1 et Gln3 rejoignent le noyau en réponse à un traitement par la rapamycine, un inhibiteur de TORC1. En accord avec cette observation, nous avons montré que Gat1, comme Gln3, est associé aux membranes intracellulaires légères.
Dans un second temps, nous avons confirmé un rôle important pour la glutamate déshydrogénase anabolique (Gdh1) au sein de la NCR, par l’intermédiaire du contrôle de la fonction de Gat1. Cependant, étant donné qu’il semble exister une forte corrélation entre l’activité anabolique de Gdh1 et sa capacité à réguler la NCR, nous n’excluons pas qu’une altération des substrats de Gdh1 ou de tout autre métabolite pourrait être responsable du phénotype observé du mutant gdh1. Nous avons également montré qu’il n’existait pas de lien simple et direct entre niveaux intracellulaires de glutamine/glutamate, activité de TORC1 et signalisation NCR. En conclusion, les mécanismes conditionnant la perception de la qualité de l’aliment azoté sont encore méconnus à ce jour.
Plusieurs cribles de suppression multicopie ont été menés pendant ce travail et ont conduit à l’identification de plusieurs éléments pouvant éventuellement intervenir dans la voie de signalisation NCR. Parmi ceux-ci, le gène codant pour la kinase KDX1 a été identifié à deux reprises. Nous avons caractérisé en détail le rôle qu’elle joue dans la régulation des gènes NCR.
Dans la dernière partie de ce travail, nous avons montré que l’addition de leucine dans le milieu de culture pouvait affecter l’expression Gat1-dépendante de certains gènes NCR, alors que par ailleurs une carence en leucine est sans effet à ce niveau. Cet effet de répression par la leucine semble nécessiter des éléments de la voie de signalisation SPS, requise pour l’induction, en réponse aux acides aminés extracellulaires, de gènes codant pour des transporteurs d’acides aminés.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Ronsmans, Aria. "Mechanisms of nitrogen catabolite repression-sensitive gene regulation by the GATA transcription factors in Saccharomyces cerevisiae." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209169.
Full textbinding of specific transcription factors to DNA. A global understanding of the mechanisms of gene
transcriptional regulation of Saccharomyces cerevisiae goes through the description of the targets and
the behavior of those transcription factors.
The GATA factors are specific transcription factors intervening in the regulation of Nitrogen
Catabolite Repression (NCR)-sensitive genes, a mechanism encompassing the transcriptional
regulations leading to the preferential use of good nitrogen sources of the growth medium of yeast in
the presence of less good nitrogen sources. Those 4 GATA factors involved in NCR comprise 2
activators (Gat1 and Gln3) and 2 repressors (Gzf3 and Dal80).
Generally speaking, the promoters of genes have always been described like the main place for
the integration of the transcription regulation signals relayed by the general and specific transcription
factors and the chromatin remodeling factors. Furthermore, the GATA factors have been described as
integrating the external signals of nitrogen availability thanks to their specific DNA binding to
consensus GATA sequences in the promoter of NCR-sensitive genes. The results presented here
introduce many nuances to the model, notably implying new proteins but also new regions in the
regulation process of the NCR-sensitive gene regulation. Indeed, the first goal of this work is to
discover and understand the mechanisms of NCR-sensitive gene regulation that will explain the
variations in their expression levels in the presence of various nitrogen sources and their dependency
towards the GATA factors.
Strikingly, it appeared that GATA factor positioning was not limited to the promoter, but
occurred also in the transcribed region. It seems that the transcription factors may have been driven
by the general transcription machinery (Pol II). The binding of a chromatin remodeling complex, RSC,
has also been demonstrated in the coding region of NCR-sensitive genes. Moreover, the binding of the
histone acetyltransferase complex, SAGA, recruited by the GATA activators, was highlighted along
NCR-sensitive genes. The SAGA complex was also implied in their transcriptional regulation.
Finally, a ChIP-sequencing experiment revealed an unsuspected number and diversification of
targets of the GATA factors in yeast, which were not limited to NCR-sensitive genes.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Erasmus, Daniel J. "Deletion analysis of the Ure2p in Saccharomyces cerevisiae and effect of NCR on the production of ethyl carbamate during wine fermentations." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51671.
Full textENGLISH ABSTRACT: The wine yeast Saccharomyces cerevisiae has the ability to utilize several different nitrogenous compounds to fulfill its metabolic requirements. Based upon different growth rates of the yeast in a particular nitrogen source, nitrogen compounds have been classified as either good or poor nitrogen sources. In an environment which contains different quality nitrogen sources, such as grape must, the yeast first utilizes good and then the poor nitrogen sources. This discrimination between good and poor nitrogen sources is referred to as nitrogen catabolite repression (NCR). Examples of good nitrogen sources are ammonia, glutamine and asparagine. Nitrogen sources such as allantoin, y-aminobutyrate (GABA), arginine and proline are poor quality nitrogen sources. Several regulatory proteins, Ure2p, Gln3p, Da180p,Gat1pand Deh1p, mediate NCR in S. cerevisiae. These trans-acting factors regulate transcription of NCR sensitive genes. All these proteins, except Ure2p, bind cis-acting elements in the promoters of genes that are responsible for degradation of poor nitrogen sources. Gln3p is an activator of NCR sensitive genes in the absence of good nitrogen sources. The predominant mechanism by which NCR functions is by using Ure2p to inactivate the activator Gln3p in the presence of a good nitrogen source. Several research groups have studied the Ure2p, mainly due to its prion-like characteristics. The Ure2p has two domains: a prion inducing domain located in the N-terminal region and a NCR regulatory domain located in the C-terminal domain. The aims of this study were (i) to determine the part of the C-terminal domain which is responsible for NCR, (ii) to establish if ure2 deletion mutants produce less ethyl carbamate during wine fermentations and (iii) if NCR functions in industrial yeast strains. Nested deletions of the URE2 gene revealed that the NCR regulatory domain resides in the last ten amino acids of the Ure2p. This was established by Northern blot analysis on the NCR sensitive genes DAL5, CAN1, and GAP1 genes. Ethyl carbamate in wine is produced by spontaneous chemical reaction between urea and ethanol in wine. Urea is produced by S. cerevisiae during the metabolism of arginine. Arginine is degraded to ornithine and urea by arginase, the product of the CAR1 gene. Degradation of urea by S. cerevisiae is accomplished by urea amidolyase, a bi-functional enzyme and product of the DUR1,2 gene which is subject to NCR. This study investigated if a ure2 mutant strain produced less ethyl carbamate during wine fermentations. Wine fermentations were conducted with diploid laboratory strains: a ure2 mutant strain and its isogenic wild type strain. GC/MS analysis of the wine revealed that the ure2 mutant produced less ethyl carbamate but more ethanol than the wild type strain when arginine, di-ammoniumphosphate, asparagine or glutamine were added as nitrogen sources, in combinations and separately. There was no significant difference between the wild type fermentation and the ure2 mutant fermentation when no nitrogen was added. It was found that a combination between the deletion of URE2 and the addition of a good nitrogen source resulted in lower levels of ethyl carbamate. High density micro array analysis done on an industrial strain wine yeast in Chardonnay grape must revealed that the GAP1, CAN1, CAR1 and DUR1,2 genes, responsible for transport and metabolism of arginine and degradation of urea, are NCR sensitive. These data strongly suggest that NCR functions in industrial yeast strains.
AFRIKAANSE OPSOMMING: Die wyngis Saccharomyces cerevisiae kan verskillende stikstofbronne gebruik om in sy stikstofbehoeftes te voldoen. Stikstofbronne word as goeie of swak stikstofbronne geklassifiseer op grond van die groeitempo van die gis op die betrokke stikstofbron. 'n Goeie stikstofbron laat die gis vinniger groei as wat dit op 'n swak stikstofbron sou groei. In omgewings soos druiwemos waar daar 'n verskeidenheid van stikstofbronne teenwoordig is, sal die gis eers die goeie bronne en daarna die swak bronne benut. Stikstofbronne soos ammonium, asparagien en glutamien word geklassifiseer as goeie bronne. Allantoïen, y-amino-butaraat (GABA), prolien en arginien word as swak stikstofbronne geklassifiseer. Die meganisme waarmee S. cerevisiae tussen die stikstofbronne onderskei, staan as stikstof kataboliet onderdrukking (NCR) bekend. Die proteïene wat vir verantwoordelik is NCR naamlik Ure2p, Gln3p, Gat1 p, Dal80p en Deh1 p, bind met die uitsondering van Ure2p, almal aan cis-werkende elemente in die promoters van NCR-sensitiewe gene. Die trans-werkende faktore reguleer die transkripsie van NCR-sensitiewe gene. NCR werk hoofsaaklik deur die inhibering van Gln3p deur Ure2p in die teenwoordigheid van 'n goeie stikstofbron. Die oorgrote meerderheid NCR-sensitiewe gene word deur Gln3p in die afwesigheid van 'n goeie stikstofbron geaktiveer. Heelwat navorsing is op die prionvormings vermoë van Ure2p gedoen. Ure2p het twee domeine: 'n N-terminale domein wat vir prionvorming verantwoordelik is en die C-terminale domein waar die NCR funksie van Ure2p gesetel is. Die doel van die studie was (i) om te bepaal waar in die C-terminale domein van Ure2p die NCR regulering geleë is, (ii) of ure2 delesie mutante minder etielkarbamaat tydens wynfermentasies produseer en (iii) of NCR in industriële gisrasse funksioneel is. Delesie analises van URE2 het getoon dat die NCR regulerings domein in die laaste tien aminosure gesetel is. Dit is vas gestel m.b.v. noordlike klad tegniek analises op die OALS, CAN1 en GAP1 gene.Etielkarbamaat in wyn word deur die spontane chemiese reaksie tussen ureum en alkohol geproduseer. Ureum word gedurende die metabolisme van arginien in S. cerevisiae geproduseer. Arginien word deur arginase, produk van die CAR1 geen, na ornitien en ureum afgebreek. Die bi-funksionele ureum amidoliase, gekodeer deur die DUR1,2 geen, breek ureum na CO2 en NH/ af. As gevolg van die NCRsensitiwiteit van dié gene is ondersoek ingestel na In ure2 mutant se vermoë om minder etielkarbamaat tydens wynfermentasies te produseer. Chardonnay druiwemos is met In diploiede laboratorium ras en die isogeniese ure2 mutant gefermenteer. GC/MS analise op die wyn het getoon dat die ure2 mutant minder etielkarbamaat, maar meer alkohol in vergelyking met die wilde tipe gis produseer, as arginien, di-ammoniumfosfaat, asparagien en glutamien, afsonderlik of gesamentlik byvoeg is. Daar was egter nie In merkwaardige verskil tussen die fermentasies waar geen stikstof bygevoeg is nie. Dit dui daarop dat In kombinasie van In URE2 delesie en die byvoeging van stikstof etielkarbamaat vlakke verlaag. Mikro-skyfie analise van In industriële gis in Chardonnay mos het getoon dat die GAP1, CAN1, CAR1 en DUR1,2 gene wat verantwoordelik is vir die transport en metabolisme van arginien en degradasie van ureum, wel NCR-sensitief is. Dit dui daarop dat NCRwel in industriële gisrasse funksioneel is.
Steyaert, Johanna M. "Studies on the regulation of conidiation in species of Trichoderma." Lincoln University, 2007. http://hdl.handle.net/10182/544.
Full textCAJUEIRO, Danielli Batista Bezerra. "Repressão pelo Metabólito de Nitrogênio em Dekkera bruxellensis." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/18314.
Full textMade available in DSpace on 2017-02-14T12:46:20Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Danielli Batista Bezerra Cajueiro.pdf: 1520169 bytes, checksum: 01f947c81a685b7a391d5c6dbfcf83bd (MD5) Previous issue date: 2015-06-12
CAPES
As fontes de nitrogênio do meio são classificadas como preferenciais e nãopreferenciais, de maneira que as primeiras inibem a expressão dos genes responsáveis pela metabolização das segundas por um mecanismo chamado de Repressão Catabólica do Nitrogênio (Nitrogen Catabolic Repression - NCR). No presente estudo avaliamos o padrão de regulação dos genes do metabolismo central do nitrogênio na levedura Dekkera bruxellensis. Foram definidos quatro grupos de fontes de nitrogênio baseados no crescimento celular. Em seguida, o padrão de expressão dos genes do metabolismo central do nitrogênio mostrou que fenilalanina, embora do grupo quatro, é o maior indutor das permeases Gap1p e Put4p, resultando em sua elevada taxa de consumo. Já a histidina, indutora da permease Put4p, promove maior indução dos genes que codificam as enzimas de assimilação de amônia. Quando o mecanismo NCR é inibido pela presença de metionina sulfoximina no meio, ocorre a desrrepressão dos genes que codificam as permeases. E finalmente, os resultados mostram que nitrato, definido no grupo dois induz o mecanismo de sinalização intracelular de regulação gênica semelhante ao que se observa quando as células estão no estado de privação de nitrogênio no meio. Isto complementa os estudos anteriores nos quais mostramos que a assimilação de nitrato altera o estado fisiológico da célula para respiração mesmo na presença de alta concentração de glicose no meio.
The nitrogen sources in the medium are classified as preferential or non-preferrential, so that the first inhibit expression of genes responsible for metabolism of the latter by a mechanism called Nitrogen Catabolic Repression (NCR). In the present study we evaluated the pattern of gene regulation of the central nitrogen metabolism in yeast Dekkera bruxellensis. It was defined four groups of nitrogen sources based on cell growth. Then, the expression pattern of the central nitrogen metabolism genes showed that phenylalanine, though belonging to group four, is the biggest inducer of genes of permeases Gap1p Put4p, resulting in its high consumption rate. Moreover, histidine induces the gene encoding permease Put4p and promoted the highest induction of the genes encoding the enzymes of ammonia assimilation. When the NCR mechanism was inhibited by the presence of methionine sulfoximine in the medium there was derepression of the genes encoding for permeases. Finally, the results showed that nitrate, defined in the group two, induced the intracellular signaling pathway gene regulation similar to that seen when cells are in a state of nitrogen deprivation in the middle. This complements our previous studies that showed that the nitrate assimilation alter the physiological state of the cell to respiration even in presence of high glucose concentration in medium.
Silva, Lana OHara Souza. "Análise de moléculas envolvidas no metabolismo de nitrogênio no fungo patogênico humano Paracoccidioides brasiliensis." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/6942.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-20T12:27:41Z (GMT) No. of bitstreams: 2 Dissertação - Lana OHara Souza Silva - 2017.pdf: 3124489 bytes, checksum: 38e1e83b1c39e6954300e0cd3e709f2a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-03-20T12:27:41Z (GMT). No. of bitstreams: 2 Dissertação - Lana OHara Souza Silva - 2017.pdf: 3124489 bytes, checksum: 38e1e83b1c39e6954300e0cd3e709f2a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-02-22
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The Paracoccidioides genus is composed of thermodimorphic fungus that causes paracoccidioidomycosis (PCM), an endemic human systemic mycosis in Latin America. These organisms grow as mycelium in temperatures below 28 °C and as yeast form in temperatures above 37 °C. Nitrogen is an important element in this microorganism’s nutrition that participates in the synthesis of proteins, nucleic acids and others biomolecules. In this regard, nitrogen uptake and metabolism are essential to growth and fungal establishment. When nitrogen levels and sources such as glutamine and ammonia concentration are limited, pathogenic fungus use a regulation system called Nitrogen Catabolic Repression that induces the expression of genes encoding permeases and enzymes required for the catabolism of secondary nitrogen sources, such as formamidase, gamma-glutamiltranspeptidase and urease. Gamma-glutamiltranspeptidase is an enzyme that catalyzes the first reaction of glutationa degradation and it has been the target of several studies about nitrogen starvation in various fungi. It has been observed that the expression of the gene encoding this enzyme was induced in limiting conditions of nitrogen and was repressed when the availability of nitrogen was high. Urease is an enzyme that catalyzes the degradation of urea in ammonia and carbonic acid. This enzyme is already known as a virulence factor in fungi such as Cryptococcus. neoformans, and also has been the target of studies about nitrogen starvation. In this study we expressed gamma-GT and urease proteins from Paracoccidioides brasiliensis, isolate Pb18, in Escherichia coli. The gene coding for Ggt and Ure were cloned in pET32a expression vector, and used for E. coli pLysS transformation. The recombinant proteins produced were shown to be catalytically active. Together, data obtained in this work could add knowledge about the role of gamma-GT and urease and can be used as a foundation for complementary experiments regarding nitrogen metabolism regulation, as well as in Paracoccidioides spp pathogenesis.
Resumo: O gênero Paracoccidioides é composto por fungos termodimórficos que causam a paracoccidioidomicose (PCM), uma micose sistêmica humana endêmica na América Latina. Quando cultivados em temperaturas menores que 28 °C o fungo cresce como micélio e em temperaturas em torno de 37 °C, como levedura. O nitrogênio é um importante nutriente para os micro-organismos, pois participa da síntese de proteínas, ácidos nucléicos e outras biomoléculas. Nesse sentido, a captação e o metabolismo de nitrogênio são essenciais para o crescimento e o estabelecimento do fungo no hospedeiro. Quando os níveis de nitrogênio e fontes como glutamina e amônia estão em concentrações limitantes, os fungos patogênicos utilizam um sistema de regulação chamado Repressão Catabólica de Nitrogênio que induz a expressão de genes que codificam permeases e enzimas necessárias para o catabolismo de fontes secundárias de nitrogênio como a formamidase, a gama-glutamil transpeptidase e a urease. A gama-glutamil transpeptidase é uma enzima que catalisa a primeira reação da degradação da glutationa. Ela tem sido alvo de estudos de privação de nitrogênio em diversos fungos, nos quais foi observada uma alta expressão do gene codificador dessa enzima em condições limitantes de nitrogênio, enquanto que, em alta disponibilidade de nitrogênio a sua expressão era reprimida. A urease é uma enzima que degrada uréia em amônia e ácido carbônico. Ela já é conhecida por ser um fator de virulência em alguns fungos, como Cryptococcus neoformans, e também tem sido alvo de estudos de privação de nitrogênio. Neste estudo nós expressamos as proteínas gama-GT e urease de Paracoccidioides brasiliensis, isolado Pb18, em sistema heterólogo bacteriano de Escherichia coli. O fragmento dos genes codificadores de Ggt e Ure foram clonados em vetor de expressão pET32a e os respectivos clones foram utilizados na transformação de células de E. coli pLySs. As proteínas recombinantes produzidas mostraram estar cataliticamente ativas. Os dados obtidos neste trabalho puderam acrescentar conhecimentos sobre as enzimas gama-GT e urease e podem ser usados como base para experimentos complementares em relação à regulação do metabolismo de nitrogênio bem como na patogênese de Paracoccidioides spp.
Sharom, Jeffrey Roslan. "A Global Kinase and Phosphatase Interaction Network in the Budding Yeast Reveals Novel Effectors of the Target of Rapamycin (TOR) Pathway." Thesis, 2011. http://hdl.handle.net/1807/29864.
Full textBook chapters on the topic "Nitrogen catabolite repression"
Kontos, Kevin, Bruno André, Jacques van Helden, and Gianluca Bontempi. "Gaussian Graphical Models to Infer Putative Genes Involved in Nitrogen Catabolite Repression in S. cerevisiae." In Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 13–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01184-9_2.
Full textWiame, Jean-Marie, Marcelle Grenson, and Herbert N. Ars. "Nitrogen Catabolite Repression in Yeasts and Filamentous Fungi." In Advances in Microbial Physiology Volume 26, 1–88. Elsevier, 1985. http://dx.doi.org/10.1016/s0065-2911(08)60394-x.
Full text