Journal articles on the topic 'Nitroaromatic molecules'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nitroaromatic molecules.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Su, Xin Fang. "Density Functional Studies on the Standard Heats of Formation for Nitroaromatic Molecules." Advanced Materials Research 1095 (March 2015): 415–18. http://dx.doi.org/10.4028/www.scientific.net/amr.1095.415.
Full textSu, Xin Fang, Wei Huang, and Hai Ying Wu. "Assessment of PBE0 Calculation of C-NO2 Bond Dissociation Energies for Nitroaromatic System." Advanced Materials Research 915-916 (April 2014): 675–78. http://dx.doi.org/10.4028/www.scientific.net/amr.915-916.675.
Full textCha, Inhwan, Seohyun Baek, Sun Gu Song, Junggong Kim, Ho Keun Lee, Jongman Lee, Kyung-su Kim, and Changsik Song. "Inter- and Intra-Hydrogen Bonding Strategy to Control the Fluorescence of Acylhydrazone-Based Conjugated Microporous Polymers and Their Application to Nitroaromatics Detection." Macromol 1, no. 3 (September 15, 2021): 234–42. http://dx.doi.org/10.3390/macromol1030016.
Full textZhao, Shu-Man, Zhao-Feng Qiu, Zou-Hong Xu, Zi-Qing Huang, Yue Zhao, and Wei-Yin Sun. "Fluorescent Zn(ii) frameworks with multicarboxylate and pyridyl N-donor ligands for sensing specific anions and organic molecules." Dalton Transactions 51, no. 9 (2022): 3572–80. http://dx.doi.org/10.1039/d1dt04052a.
Full textNakagaki, Ryoichi, Kiyoshi Mutai, Mitsuo Hiramatsu, Hideyuki Tukada, and Saburo Nakakura. "Magnetic field effects upon photochemistry of bichromophoric chain molecules containing nitroaromatic and arylamino moieties: Elucidation of reaction mechanism and control of reaction yields." Canadian Journal of Chemistry 66, no. 8 (August 1, 1988): 1989–96. http://dx.doi.org/10.1139/v88-321.
Full textJu, Kou-San, and Rebecca E. Parales. "Nitroaromatic Compounds, from Synthesis to Biodegradation." Microbiology and Molecular Biology Reviews 74, no. 2 (June 2010): 250–72. http://dx.doi.org/10.1128/mmbr.00006-10.
Full textYan, Jingjing, Alexander D. Carl, Alex R. Maag, John C. MacDonald, Peter Müller, Ronald L. Grimm, and Shawn C. Burdette. "Detection of adsorbates on emissive MOF surfaces with X-ray photoelectron spectroscopy." Dalton Transactions 48, no. 14 (2019): 4520–29. http://dx.doi.org/10.1039/c8dt04404j.
Full textFrancisco da Silva, Amauri, Antonio João da Silva Filho, Mário Vasconcellos, and Otávio Luís de Santana. "One-Electron Reduction Potentials: Calibration of Theoretical Protocols for Morita–Baylis–Hillman Nitroaromatic Compounds in Aprotic Media." Molecules 23, no. 9 (August 24, 2018): 2129. http://dx.doi.org/10.3390/molecules23092129.
Full textMalval, Jean-Pierre, Marion Cranney, Sylvain Achelle, Huriye Akdas-Kiliç, Jean-Luc Fillaut, Nolwenn Cabon, Françoise Robin-le Guen, Olivier Soppera, and Yann Molard. "Porosity-driven large amplitude dynamics for nitroaromatic sensing with fluorescent films of alternating D–π–A molecules." Chemical Communications 55, no. 95 (2019): 14331–34. http://dx.doi.org/10.1039/c9cc07227f.
Full textMarshall, A., A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal. "Laser-induced dissociation, ionization and fragmentation processes in nitroaromatic molecules." International Journal of Mass Spectrometry and Ion Processes 116, no. 2 (July 1992): 143–56. http://dx.doi.org/10.1016/0168-1176(92)80124-j.
Full textTure, Satish Ashok, Shruthy D. Pattathil, Bertrand Zing Zing, and Venkataraman Abbaraju. "Fluorescence Sensing of Some Important Nitroaromatic Compounds by Using Polyaniline Ag Composite." Micro 3, no. 1 (February 9, 2023): 224–38. http://dx.doi.org/10.3390/micro3010016.
Full textMurray, Jane S., Pat Lane, and Peter Politzer. "Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules." Molecular Physics 85, no. 1 (May 1995): 1–8. http://dx.doi.org/10.1080/00268979500100891.
Full textJensen, S., K. Tan, W. Lustig, D. Kilin, J. Li, Y. J. Chabal, and T. Thonhauser. "Quenching of photoluminescence in a Zn-MOF sensor by nitroaromatic molecules." Journal of Materials Chemistry C 7, no. 9 (2019): 2625–32. http://dx.doi.org/10.1039/c8tc06281a.
Full textPark, Miso, Lakshmi N. Cella, Wilfred Chen, Nosang V. Myung, and Ashok Mulchandani. "Carbon nanotubes-based chemiresistive immunosensor for small molecules: Detection of nitroaromatic explosives." Biosensors and Bioelectronics 26, no. 4 (December 2010): 1297–301. http://dx.doi.org/10.1016/j.bios.2010.07.017.
Full textKose, Muhammet Erkan, Barbara A. Harruff, Yi Lin, L. Monica Veca, Fushen Lu, and Ya-Ping Sun. "Efficient Quenching of Photoluminescence from Functionalized Single-Walled Carbon Nanotubes by Nitroaromatic Molecules." Journal of Physical Chemistry B 110, no. 29 (July 2006): 14032–34. http://dx.doi.org/10.1021/jp063251o.
Full textLu, Wei, Xiao Dong, Lili Qiu, Zequn Yan, Zihui Meng, Min Xue, Xuan He, and Xueyong Liu. "Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules." Journal of Hazardous Materials 326 (March 2017): 130–37. http://dx.doi.org/10.1016/j.jhazmat.2016.12.024.
Full textPolitzer, Peter, Jorge M. Seminario, and Paul R. Bolduc. "A proposed interpretation of the destabilizing effect of hydroxyl groups on nitroaromatic molecules." Chemical Physics Letters 158, no. 5 (June 1989): 463–69. http://dx.doi.org/10.1016/0009-2614(89)87371-3.
Full textFANG, Ming, Ming, Zhe LI, and Yao FU. "Substituent Effect on the C-NO2and N-NO2Bond Dissociation Energies of Nitroaromatic Molecules." Chinese Journal of Chemistry 26, no. 6 (June 2008): 1122–28. http://dx.doi.org/10.1002/cjoc.200890200.
Full textNguyen, Thao Phuong Le, Thao Thanh Bui, Bao Kim Doan, Linh Phuong Bui, Tam Hoang Luu, Chau Duc Tran, Tung Viet Tuan Tran, Tsutomu Yokozawa, and Ha Tran Nguyen. "Synthesis of a conjugated molecular triad based on 9,9-dioctyl-9H-fluorene for fluorescence sensing to determine mesotrione." Ministry of Science and Technology, Vietnam 65, no. 1 (March 15, 2023): 14–18. http://dx.doi.org/10.31276/vjste.65(1).14-18.
Full textLessner, Daniel J., Rebecca E. Parales, Shakti Narayan, and David T. Gibson. "Expression of the Nitroarene Dioxygenase Genes in Comamonas sp. Strain JS765 and Acidovorax sp. Strain JS42 Is Induced by Multiple Aromatic Compounds." Journal of Bacteriology 185, no. 13 (July 1, 2003): 3895–904. http://dx.doi.org/10.1128/jb.185.13.3895-3904.2003.
Full textDai, Jingjing, Michael Zambrana, and Maria Fidalgo. "Amino-functionalized Fluorescent Carbon Dots for Chemical Sensing." MRS Advances 1, no. 19 (2016): 1365–70. http://dx.doi.org/10.1557/adv.2016.169.
Full textRice, Betsy M., Samir Sahu, and Frank J. Owens. "Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules." Journal of Molecular Structure: THEOCHEM 583, no. 1-3 (April 2002): 69–72. http://dx.doi.org/10.1016/s0166-1280(01)00782-5.
Full textLopatin, B. V. "Interaction of vibrations of atomic groups for the example of molecules of nitroaromatic compounds." Journal of Applied Spectroscopy 43, no. 4 (October 1985): 1137–39. http://dx.doi.org/10.1007/bf00662331.
Full textZobel, J. Patrick, and Leticia González. "Nonadiabatic Dynamics Simulation Predict Intersystem Crossing in Nitroaromatic Molecules on a Picosecond Time Scale." ChemPhotoChem 3, no. 9 (June 13, 2019): 833–45. http://dx.doi.org/10.1002/cptc.201900108.
Full textXiang, Zhonghua, and Dapeng Cao. "Synthesis of Luminescent Covalent-Organic Polymers for Detecting Nitroaromatic Explosives and Small Organic Molecules." Macromolecular Rapid Communications 33, no. 14 (April 17, 2012): 1184–90. http://dx.doi.org/10.1002/marc.201100865.
Full textNainsi, Nainsi, and Nibedita Banik. "Detection of Picric Acid: By Fluorescent Chemosensor (Nitro-Aromatic Compound): A Short Review." Material Science Research India 20, SpecialIssue1 (December 31, 2023): 40–47. http://dx.doi.org/10.13005/msri.20.special-issue1.05.
Full textMiseviciene, Lina, Zilvinas Anusevicius, Jonas Sarlauskas, and Narimantas Cenas. "Reduction of nitroaromatic compounds by NAD(P)H:quinone oxidoreductase (NQO1): the role of electron-accepting potency and structural parameters in the substrate specificity." Acta Biochimica Polonica 53, no. 3 (August 21, 2006): 569–76. http://dx.doi.org/10.18388/abp.2006_3329.
Full textMiliukiene, Valė, and Narimantas Čėnas. "Cytotoxicity of Nitroaromatic Explosives and their Biodegradation Products in Mice Splenocytes: Implications for their Immunotoxicity." Zeitschrift für Naturforschung C 63, no. 7-8 (August 1, 2008): 519–25. http://dx.doi.org/10.1515/znc-2008-7-809.
Full textHromadová, Magdaléna, Romana Sokolová, Lubomír Pospíšil, Štěpánka Lachmanová, Nicolangelo Fanelli, and Stefania Giannarelli. "Host–Guest interaction of pesticide bifenox with cyclodextrin molecules. An electrochemical study." Collection of Czechoslovak Chemical Communications 74, no. 11-12 (2009): 1647–64. http://dx.doi.org/10.1135/cccc2009509.
Full textLauzier, Annie, Claudia Goyer, Luc Ruest, Ryszard Brzezinski, Don L. Crawford, and Carole Beaulieu. "Effect of amino acids on thaxtomin A biosynthesis by Streptomyces scabies." Canadian Journal of Microbiology 48, no. 4 (April 1, 2002): 359–64. http://dx.doi.org/10.1139/w02-031.
Full textLiu, Weitao, Wajid Ali, Ye Liu, Mingliang Li, and Ziwei Li. "Sensitive Detection of Trace Explosives by a Self-Assembled Monolayer Sensor." Micromachines 14, no. 12 (November 29, 2023): 2179. http://dx.doi.org/10.3390/mi14122179.
Full textXu, Liming, Jing Wu, Weiqiang Zhou, Fengxing Jiang, Hui Zhang, Rui Wang, Aiqin Liang, Jingkun Xu, and Xuemin Duan. "Using nitroaromatic fused-heterocycle molecules as nitrogen source to hugely boost the capacitance performance of graphene." Electrochimica Acta 354 (September 2020): 136703. http://dx.doi.org/10.1016/j.electacta.2020.136703.
Full textKarikalan, Natarajan, Subbiramaniyan Kubendhiran, Shen-Ming Chen, Periyasamy Sundaresan, and Raj Karthik. "Electrocatalytic reduction of nitroaromatic compounds by activated graphite sheets in the presence of atmospheric oxygen molecules." Journal of Catalysis 356 (December 2017): 43–52. http://dx.doi.org/10.1016/j.jcat.2017.09.012.
Full textOsorio, Manuel I., Nicolás Bruna, Víctor García, Lisdelys González-Rodríguez, Matías S. Leal, Francisco Salgado, Matías Vargas-Reyes, Fernando González-Nilo, José M. Pérez-Donoso, and Osvaldo Yáñez. "Structural Factors That Determine the Activity of the Xenobiotic Reductase B Enzyme from Pseudomonas putida on Nitroaromatic Compounds." International Journal of Molecular Sciences 24, no. 1 (December 26, 2022): 400. http://dx.doi.org/10.3390/ijms24010400.
Full textBailey-Darland, Sullivan, Taylor D. Krueger, and Chong Fang. "Ultrafast Spectroscopies of Nitrophenols and Nitrophenolates in Solution: From Electronic Dynamics and Vibrational Structures to Photochemical and Environmental Implications." Molecules 28, no. 2 (January 6, 2023): 601. http://dx.doi.org/10.3390/molecules28020601.
Full textDong, Bao-Xia, Yong-Mei Pan, Wen-Long Liu, and Yun-Lei Teng. "An Ultrastable Luminescent Metal–Organic Framework for Selective Sensing of Nitroaromatic Compounds and Nitroimidazole-Based Drug Molecules." Crystal Growth & Design 18, no. 1 (December 4, 2017): 431–40. http://dx.doi.org/10.1021/acs.cgd.7b01430.
Full textBoopathy, R., and C. F. Kulpa. "Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (B strain)." Canadian Journal of Microbiology 39, no. 4 (April 1, 1993): 430–33. http://dx.doi.org/10.1139/m93-062.
Full textShao, Juxiang, Xinlu Cheng, and Xiangdong Yang. "Density functional calculations of bond dissociation energies for removal of the nitrogen dioxide moiety in some nitroaromatic molecules." Journal of Molecular Structure: THEOCHEM 755, no. 1-3 (November 2005): 127–30. http://dx.doi.org/10.1016/j.theochem.2005.08.008.
Full textYang, Hong, Mi Zhou, Huarong Li, Tong Wei, Can Tang, Yang Zhou, and Xinping Long. "Effects of Low-level Lipid Peroxidation on the Permeability of Nitroaromatic Molecules across a Membrane: A Computational Study." ACS Omega 5, no. 10 (March 6, 2020): 4798–806. http://dx.doi.org/10.1021/acsomega.9b03462.
Full textMarshall, A., A. Clark, K. W. D. Ledingham, J. Sander, and R. P. Singhal. "Laser ionisation studies of nitroaromatic and NOx(x = 1 or 2) molecules in the region 224–238 nm." International Journal of Mass Spectrometry and Ion Processes 125, no. 2-3 (June 1993): R21—R26. http://dx.doi.org/10.1016/0168-1176(93)80052-g.
Full textMarchisio, Andrea, and Jean-Marc Tulliani. "Semiconducting Metal Oxides Nanocomposites for Enhanced Detection of Explosive Vapors." Ceramics 1, no. 1 (June 25, 2018): 98–119. http://dx.doi.org/10.3390/ceramics1010009.
Full textZhang, Linyuan, Jung Hyun Son, Zhe Bai, Wei Zhang, Ling Li, Lina Wang, and Jianmin Chen. "Characterizing Atmospheric Brown Carbon and Its Emission Sources during Wintertime in Shanghai, China." Atmosphere 13, no. 6 (June 20, 2022): 991. http://dx.doi.org/10.3390/atmos13060991.
Full textPajuelo-Corral, Oier, Laura Razquin-Bobillo, Sara Rojas, Jose Angel García, Duane Choquesillo-Lazarte, Alfonso Salinas-Castillo, Ricardo Hernández, Antonio Rodríguez-Diéguez, and Javier Cepeda. "Lanthanide(III) Ions and 5-Methylisophthalate Ligand Based Coordination Polymers: An Insight into Their Photoluminescence Emission and Chemosensing for Nitroaromatic Molecules." Nanomaterials 12, no. 22 (November 11, 2022): 3977. http://dx.doi.org/10.3390/nano12223977.
Full textAhn, Hyun, and Suhyuk Choi. "Membraneless Ionic Liquid Droplet Nanoprobe for Vapor Sensing and Gas Phase Scanning Electrochemical Microscopy." ECS Meeting Abstracts MA2023-02, no. 62 (December 22, 2023): 2945. http://dx.doi.org/10.1149/ma2023-02622945mtgabs.
Full textNivinskas, H., R. L. Koder, Z. Anusevicius, J. Sarlauskas, A. F. Miller, and N. Cenas. "Two-electron reduction of nitroaromatic compounds by Enterobacter cloacae NAD(P)H nitroreductase: description of quantitative structure-activity relationships." Acta Biochimica Polonica 47, no. 4 (December 31, 2000): 941–49. http://dx.doi.org/10.18388/abp.2000_3949.
Full textMarshall, A., A. Clark, R. M. Deas, C. Kosmidis, K. W. D. Ledingham, W. Peng, and R. P. Singhal. "Sensitive atmospheric pressure detection of nitroaromatic compounds and NO x (x= 1,2) molecules in an ionization chamber using resonance-enhanced multi-photon ionization." Analyst 119, no. 8 (1994): 1719. http://dx.doi.org/10.1039/an9941901719.
Full textČėnas, Narimantas, Aušra Nemeikaitė-Čėnienė, and Lidija Kosychova. "Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity." International Journal of Molecular Sciences 22, no. 16 (August 8, 2021): 8534. http://dx.doi.org/10.3390/ijms22168534.
Full textWen, Hai-Ying, Li-Bin Pan, Shu-Rong Ma, Xin-Yu Yang, Jia-Chun Hu, Hai-Fan Zhao, Zeng-Qiang Gao, Yu-Hui Dong, Yan Wang, and Heng Zhang. "Structural basis for the transformation of the traditional medicine berberine by bacterial nitroreductase." Acta Crystallographica Section D Structural Biology 78, no. 10 (September 27, 2022): 1273–82. http://dx.doi.org/10.1107/s2059798322008373.
Full textLesanavičius, Mindaugas, Daisuke Seo, Gintarė Maurutytė, and Narimantas Čėnas. "Redox Properties of Bacillus subtilis Ferredoxin:NADP+ Oxidoreductase: Potentiometric Characteristics and Reactions with Pro-Oxidant Xenobiotics." International Journal of Molecular Sciences 25, no. 10 (May 14, 2024): 5373. http://dx.doi.org/10.3390/ijms25105373.
Full textLesanavičius, Mindaugas, Daisuke Seo, and Narimantas Čėnas. "Thioredoxin Reductase-Type Ferredoxin: NADP+ Oxidoreductase of Rhodopseudomonas palustris: Potentiometric Characteristics and Reactions with Nonphysiological Oxidants." Antioxidants 11, no. 5 (May 19, 2022): 1000. http://dx.doi.org/10.3390/antiox11051000.
Full text