Academic literature on the topic 'Nitrides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nitrides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nitrides"

1

Van Landeghem, Hugo, Raphaële Danoix, Mohamed Gouné, Sylvie Bordère, Andrius Martinavičius, Peter Jessner, Thierry Epicier, Béatrice Hannoyer, Frédéric Danoix, and Abdelkrim Redjaïmia. "Contribution of Local Analysis Techniques for the Characterization of Iron and Alloying Elements in Nitrides: Consequences on the Precipitation Process in Fe–Si and Fe–Cr Nitrided Alloys." Materials 11, no. 8 (August 11, 2018): 1409. http://dx.doi.org/10.3390/ma11081409.

Full text
Abstract:
Atom Probe Tomography (APT), Transmission Electron Microscopy (TEM), and 3D mechanical calculations in complex geometry and anisotropic strain fields were employed to study the role of minor elements in the precipitation process of silicon and chromium nitrides in nitrided Fe–Si and Fe–Cr alloys, respectively. In nitrided Fe–Si alloys, an original sequence of Si3N4 precipitation was highlighted. Al–N clusters form first and act as nucleation sites for amorphous Si3N4 nitrides. This novel example of particle-simulated nucleation opens a new way to control Si3N4 precipitation in Fe–Si alloys. In nitrided Fe–Cr alloys, both the presence of iron in chromium nitrides and excess nitrogen in the ferritic matrix are unquestionably proved. Only a certain part of the so-called excess nitrogen is shown to be explained by the elastic accommodation of the misfit between nitride and the ferritic matrix. The presence of immobile excess nitrogen trapped at interfaces can be highly suspected.
APA, Harvard, Vancouver, ISO, and other styles
2

Wołowiec-Korecka, Emilia, Jerzy Michalski, and Bartłomiej Januszewicz. "The Stability of the Layer Nitrided in Low-Pressure Nitriding Process." Coatings 13, no. 2 (January 21, 2023): 257. http://dx.doi.org/10.3390/coatings13020257.

Full text
Abstract:
The kinetics of the nitrided layer thickness growth and its structure depend on the nitrogen flux from the atmosphere to the nitrided surface. A nitrogen flux to the surface is more significant than a diffusion flux into the substrate, during forming surface iron nitrides and the internal nitriding zone. For pure iron, nitrided under low pressure, cutting off the nitriding atmosphere creates a flux from the subsurface layer of nitrides to the surface. The purpose of this paper is to determine the direction of the nitrogen flux in a similar situation for steels containing nitride-forming elements, thus answering the question of the stability of the layer nitrided under such conditions. The surface of X37CrMoV5-1 steel was nitrided under low pressure (of 24 hPa) and annealed in a vacuum or nitrogen. The microstructure, thickness of the nitride layers nitrided layers, the thickness of the internal nitriding zone, surface hardness and stresses were examined. The highest values of the nitrided layer properties were observed for the samples saturated only with nitrogen obtained from ammonia dissociation or additionally heated in nitrogen. It has been shown that using a pure vacuum during the annealing stage leads to unfavourable changes in the structure of the nitrided layer formed and, in particular, to the decomposition of the iron nitride layer formed at the saturation stage and occurrence of the tensile stresses—what excludes practical application of such layer. Ultimately, it has been shown that in the low-pressure nitriding process, the stability of the nitride layer of the nitrided surface strongly depends on the annealing atmosphere during the annealing stage, while the stability of the internal nitriding zone remains mainly at the same level.
APA, Harvard, Vancouver, ISO, and other styles
3

Shabashov, V. A., S. V. Afanasiev, V. A. Zavalishin, L. G. Korshunov, S. V. Borisov, A. V. Litvinov, A. E. Zamatovsky, and V. A. Semionkin. "Implementation of Megaplastic Deformation for Control of the Gradient Composition of Pseudo-Layers in the Nitrided Surface of Fe-Ni-Cr Steel - Production of Quasi-Bimetallic Plate." Defect and Diffusion Forum 371 (February 2017): 86–96. http://dx.doi.org/10.4028/www.scientific.net/ddf.371.86.

Full text
Abstract:
Megaplastic deformation has been realized by sliding friction (or high-pressure torsion) on ion-plasma-nitrided surface of austenitic Fe-Cr-Ni steel. The deformation-induced dissolution of iron and chromium nitrides, the formation of secondary chromium nitride phases and the increase of depth of gradient-composition matrix pseudo-layer have been achieved under friction and subsequent annealing. A quasi-bimetallic foil with the largest dimension of deflection has been produced with the use of friction and subsequent annealing of the nitrided surface.
APA, Harvard, Vancouver, ISO, and other styles
4

Riedel, Ralf, Elisabeta Horvath-Bordon, Hans Joachim Kleebe, Peter Kroll, G. Miehe, P. A. van Aken, and Stefan Lauterbach. "New Ceramic Phases in the Ternary Si-C-N System." Key Engineering Materials 403 (December 2008): 147–48. http://dx.doi.org/10.4028/www.scientific.net/kem.403.147.

Full text
Abstract:
The ultra-high pressure and temperature synthesis of spinel silicon nitride and germanium nitride on the one hand as well as the successful synthesis of tin nitride at ambient pressure on the other hand have caused an enormous impact on both basic science and technological development of advanced nitrides. Aim and scope of the research in this field is to synthesize novel nitrides for structural and functional applications. High presssure nitrides may combine ultra-high hardness with high thermal stability in terms of decomposition in different environments and are expected to show interesting optoelectronic properties. Here, the state of the art and the progress in the field of novel advanced nitrides and related materials synthesized reproducibly under high pressure are reviewed.
APA, Harvard, Vancouver, ISO, and other styles
5

Petrova, Larisa, Vladimir Alexandrov, Viktor Vdovin, and Pyotr Demin. "Hardening of a quick-speed steel tool through nitration process with nitrogen controlled potential." Science intensive technologies in mechanical engineering 2022, no. 1 (January 28, 2022): 3–10. http://dx.doi.org/10.30987/2223-4608-2022-1-3-10.

Full text
Abstract:
The study of the gas nitriding method, which allows obtaining high-quality diffuse layers in high-speed steel P6M5 on the basis of an internal nitrogen hardening zone with no brittle nitride zone, has been viewed. Research results of phase composition of nitrided steel with a change in the nitrogen potential of the atmosphere during dilution of ammonia are presented. Nitrided tool increased resistance during drilling constructional steel and titanium alloy, which is due to precipitation hardening treatment of the internal nitrogenization zone using tungsten nitrides, is given.
APA, Harvard, Vancouver, ISO, and other styles
6

Mondal, S., and A. K. Banthia. "Triethanolamine Molybdate, a New Polymeric Precursor for Molybdenum Nitride." Advanced Materials Research 29-30 (November 2007): 195–98. http://dx.doi.org/10.4028/www.scientific.net/amr.29-30.195.

Full text
Abstract:
Nitrides remain a relatively unexplored class of materials primarily due to the difficulties associated with their synthesis and characterization. Several synthetic routes, including high temperature reactions, microwave assisted synthesis, and the use of plasmas, to prepare binary and ternary nitrides have been explored. Transition metal nitrides form a class of materials with unique physical properties, which give them varied applications, as high temperature ceramics, magnetic materials, superconductors or catalysts. They are commonly prepared by high temperature conventional processes, but alternative synthetic approaches have also been explored, more recently, which utilize moderate temperature condition. Transition metal nitrides particularly, molybdenum nitride, niobium nitride, and tungsten nitride have important applications as catalyst in hydrodenitridation reactions. These nitrides have been traditionally synthesized using high temperature nitridation treatments of the oxides. The nitridation temperatures are very high (> 800- 1000 oC). The aim of our work is to synthesize molybdenum nitride by a simple, low-temperature route. The method involves pyrolysis of a polymeric precursor, which was prepared from the condensation reaction between triethanolamine and molybdic acid. The melting point of the product is 180oC. The polymeric precursor and its pyrolyzed products are characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). X-ray diffraction shows that molybdenum nitride (MoN) obtained from this method has hexagonal crystal structure. MoN is obtained by this method at very low temperature (~ 400 oC).
APA, Harvard, Vancouver, ISO, and other styles
7

Novák, Pavel, Dalibor Vojtěch, Jan Šerák, Michal Novák, and Barbora Bártová. "Mechanism and Kinetics of Plasma Nitriding of the Nb-Alloyed PM Tool Steel." Defect and Diffusion Forum 263 (March 2007): 87–92. http://dx.doi.org/10.4028/www.scientific.net/ddf.263.87.

Full text
Abstract:
The aim of this work was to describe the mechanism and kinetics of plasma nitriding of a Nb-containing PM (powder metallurgy) tool steel. Material containing 2.5 wt.% C, 3.3% Si, 6.2% Cr, 2.2% Mo, 2.6% V, 2.6% Nb and 1.0% W was prepared by nitrogen melt atomization and hot isostatic pressing. Heat-treated steel (quenching from 1100 °C, triple tempering at 550 °C for 1h) was plasma nitrided at temperatures ranging from 470 °C to 530 °C / 30 - 180 min. Light microscopy, TEM, SEM and WDS were used to study the nitrided steel. It has been shown, that nitriding at 470°C leads to the formation of thin layers composed only of a diffusion zone containing nitrogen-rich martensite and fine nitride precipitates, no layer of nitrides is formed on the surface. Nitriding is probably controlled by the nitrogen diffusion in martensite to the material or by the processes in the nitriding atmosphere at this temperature. Nitriding at the temperature of 500°C and more leads to the formation of a continuous layer of nitrides and carbonitrides on the surface that limits further nitrogen diffusion. Niobium, as a prospective element in tool steels, was not found to play a role in the formation of the nitrided layer directly. Niobium replaces vanadium in very thermodynamically stable primary MC carbides. This results in higher vanadium content in others less stable carbides and in the matrix. Due to this effect, higher portion of vanadium can precipitate as VC carbides and VN nitrides during heat treatment and nitriding, respectively.
APA, Harvard, Vancouver, ISO, and other styles
8

Schwarz, Benjamin, Regina E. Hörth, Ewald Bischoff, Ralf E. Schacherl, and Eric J. Mittemeijer. "The Process of Tungsten-Nitride Precipitation upon Nitriding Ferritic Fe-0.5 at.% W Alloy." Defect and Diffusion Forum 334-335 (February 2013): 284–89. http://dx.doi.org/10.4028/www.scientific.net/ddf.334-335.284.

Full text
Abstract:
The precipitation of tungsten nitride upon internal nitriding of ferritic Fe-0.5 at.% W alloy was investigated at 610°C in a flowing NH3/H2 gas mixture. Different tungsten nitrides developed successively; the thermodynamically stable hexagonal δ-WN could not be detected. The state of deformation of the surface plays an important role for the development of tungsten nitride at the surface. The morphologies of the tungsten nitrides developed at the surface and those precipitated at some depth in the specimen are different. The nitride particles at the surface exhibit mostly an equiaxed morphology (with the size of the order 0.5 µm) and have a crystal structure which can be described as a superstructure derived from hexagonal δ-WN. These nitride particles show a strong preferred orientation with respect to the specimen frame of reference but have no relation with the crystal orientation of the surrounding ferrite matrix. In the bulk, nanosized and finely dispersed platelet-like precipitates grow preferentially along {100}α-Fe. It is unclear whether these precipitates consist of binary iron nitride α´´-Fe16N2 or of a ternary Fe-W-N. Additionally to the finely dispersed particles, bigger nitrides at ferrite grain boundaries develop exhibiting platelet-type morphology and possessing a crystal structure which can be also described as a superstructure derived from hexagonal δ-WN. Upon prolonged nitriding assumed discontinuous precipitation of the initially precipitated finely dispersed nitrides starts from the ferrite-grain boundaries resulting in lamellas consisting of alternate ferrite and hexagonal nitride lamellas, whereas the nitride lamellas having a Pitsch-Schrader orientation relationship with the surrounding ferrite matrix. The nitrides precipitated upon nitriding in the bulk were found to be unstable during H2 reduction at 470°C. Remarkably, upon such low temperature dissolution of the nitrides took place but only the nitrogen from the nitride particles could diffuse out of the nitride platelets and the specimen, leaving W-rich regions (W-clusters) at the location of the original precipitates.
APA, Harvard, Vancouver, ISO, and other styles
9

Peng, Jiayu, Juan José J. Giner Sanz, Livia Giordano, William P. Mounfield III, Graham Leverick, Yang Yu, Yuriy Román-Leshkov, and Yang Shao-Horn. "Design Principles for Transition Metal Nitride Stability and Ammonia Generation in Acid." ECS Meeting Abstracts MA2023-01, no. 39 (August 28, 2023): 2311. http://dx.doi.org/10.1149/ma2023-01392311mtgabs.

Full text
Abstract:
Transition metal nitrides have shown great promise for reducing or eliminating the use of expensive precious-metal-based catalysts (e.g., Pt) in proton exchange membrane fuel cells and electrolyzers, but the use of these nitrides in such technologies is severely hindered by their dissolution at acidic pHs [1-2]. More importantly, the decomposition of transition metal nitrides in acid generates ammonia from the protonation of lattice nitrogen, giving rise to many false positives in previous reports of nitride catalysts for electrochemical nitrogen reduction to ammonia. For example, while nitrides such as VN [3], NbN [4], and Mo2N [5] have been computationally predicted to catalyze the reduction of nitrogen to ammonia, the experimentally observed ammonia has been attributed to the decomposition of nitrides in acid [6-8]. To tackle this challenge, motivated by our previous work [9-12] on the design principles of transition-metal-oxide-based catalysts, we established the stability descriptors of transition metal nitrides in acid. Such stability descriptors not only offer a fundamental understanding of nitride dissolution but also provide new guiding principles to optimize the intrinsic stability of nitrides for diverse acidic applications. In this work [13], combining ab initio calculations with synchrotron X-ray spectroscopies, we identified electronic-structure-based design principles governing the extent and kinetics of nitride dissolution and ammonia production in acid. We found that lowering the nitrogen 2p band center of transition metal nitrides with respect to the Fermi level leads to weakened metal-nitrogen bonds, increased labile metallic character, and a reduced barrier for the protonation of lattice nitrogen to produce ammonia, correlating with faster dissolution kinetics of nitrides in acid. Moreover, increasing the solubility of dissolved metal ions in acid was found to be critical in preventing surface oxide passivation to ensure the complete conversion from transition metal nitrides to ammonia. Based on these observations, a new mechanistic picture was formulated, where the initial protonation step of lattice nitrogen is critical to trigger nitride dissolution, and this proposed reaction scheme was supported by the pH-dependent dissolution kinetics of nitrides in acid. These design principles and mechanistic insights for producing ammonia and dissolving metal cations from the decomposition of nitrides in acid are essential for a variety of clean energy applications. For instance, such design principles can be leveraged to boost the stability of nitride catalysts for proton-exchange membrane fuel cells and electrochemical ammonia synthesis, where the dissolution of nitrides in acid has hindered their functions. Moreover, these descriptors for nitride dissolution and ammonia formation in acid provide emerging opportunities for designing novel nitride chemistries for distributed, on-demand ammonia generation. As nitrides represent an exciting, yet markedly unexplored chemical space, this work provides a blueprint to design multinary nitrides in such a vast materials space for various acidic applications, including electrocatalysis and beyond. References: [1] D. Göhl, et al. Nat. Mater. 19, 287 (2020). [2] M.E. Kreider, et al. ACS Appl. Mater. Interfaces 11, 26863 (2019). [3] Y. Abghoui, et al. ACS Catal. 6, 635 (2016). [4] Y. Abghoui and E. Skúlason, J. Phys. Chem. C 121, 6141 (2017). [5] I. Matanović, et al. Phys. Chem. Chem. Phys. 16, 3014 (2014). [6] B. Hu, et al. ACS Energy Lett. 4, 1053 (2019). [7] H.L. Du, et al. ACS Sustain. Chem. Eng. 7, 6839 (2019). [8] R. Manjunatha, et al. ChemCatChem 12, 438 (2020). [9] D.A. Kuznetsov†, J. Peng†, et al. J. Phys. Chem. C 124, 6562 (2020). († denotes equal contribution) [10] S. Yuan†, J. Peng†, B. Cai†, et al. Nat. Mater. 21, 673 (2022). († denotes equal contribution) [11] J. Peng, et al. Chem. Mater. 34, 7774 (2022). [12] J. Peng, et al. Nat. Rev. Mater. (2022) doi: 10.1038/s41578-022-00466-5. [13] J. Peng, et al. Joule (2022) accepted.
APA, Harvard, Vancouver, ISO, and other styles
10

Talley, Kevin R., Craig L. Perkins, David R. Diercks, Geoff L. Brennecka, and Andriy Zakutayev. "Synthesis of LaWN 3 nitride perovskite with polar symmetry." Science 374, no. 6574 (December 17, 2021): 1488–91. http://dx.doi.org/10.1126/science.abm3466.

Full text
Abstract:
Nitrides join the perovskite club Perovskite structured materials have a variety of uses as photovoltaics, capacitors, and micromechanical actuators, along with other applications. Oxides, halides, and chalcogenides all have large numbers of perovskite structured materials. Examples of perovskite nitrides are conspicuously absent, but Talley et al . managed to synthesize one (see the Perspective by Hong). Lanthanum tungsten nitride in the perovskite structure turns out to be piezoelectric, which is ideal for a variety of applications. Perovskite structured nitrides are very attractive because they could easily integrate with the large number of nitride-based semiconducting devices already in use. —BG
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nitrides"

1

Wang, Hongji. "Investigations into carbon nitrides and carbon nitride derivatives." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-165492.

Full text
Abstract:
Carbon nitrides and carbon nitride derivatives are promising photocatalysts. The main focus of this thesis is the synthesis and characterization of various carbon nitrides (incompletely condensed melon, carbon nitride doped cesium titanate, ultra-long calcined melon, and OH-melem). Those carbon nitrides were then tested with regard to their photocatalytic properties. In the first part of chapter 3 of this thesis, we focus on a material called ‘‘melem oligomer’’. Two different synthesis routes were applied (open system and half open system) and the composition and structure of this material was studied. Melem with two different crystalline structures and some amorphous residues were found in the product. We also tested the photocatalytic activity of melem oligomer and confirmed hydrogen production from water with a relatively low rate of 2 μmol g-1 h-1. In the second part of chapter 3, we synthesized ultra-long calcined melamine which may have a morphology similar to the ‘‘g-C3N4 nanosheets’’. We analyzed both the composition and structure and investigated the efficiency of the presumed g-C3N4 nanosheets for hydrogen production from water. Ultra-long calcined melamine showed the best photoactivity which is twice that of melon at 490 °C. This is most likely due to the interesting morphology and high surface area. In chapter 4, melem oligomer was doped with cesium titanate in situ. Different calcination times were applied and various characterization techniques were used to investigate the composition, structure and morphology of the obtained materials. The efficiency of this hybrid photocatalyst for hydrogen production did not show higher photoactivity than the pure carbon nitrides except in the case of 16 h calcination which was the optimum calcination time overall. In chapter 5, OH-melem with a composition close to 2-oxo-6,10-diamino-s-heptazine, which could be a precursor of oxygen-doped g-C3N4, was synthesized and characterized by various techniques. Crystallinity is rather low in this oxygen containing species. NMR spectra differ from melem or cyameluric acid and XPS results confirm the presence of C=O groups. Overall, different carbon nitrides and carbon nitride derivatives were synthesized and chemically investigated to gain further knowledge on their synthesis, chemical properties and their resulting application as photocatalysts.
APA, Harvard, Vancouver, ISO, and other styles
2

Fischer, Anna. ""Reactive hard templating" : from carbon nitrides to metal nitrides." Phd thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2008/1977/.

Full text
Abstract:
Nanostructured inorganic materials are routinely synthesized by the use of templates. Depending on the synthesis conditions of the product material, either “soft” or “hard” templates can be applied. For sol-gel processes, usually “soft” templating techniques are employed, while “hard” templates are used for high temperature synthesis pathways. In classical templating approaches, the template has the unique role of structure directing agent, in the sense that it is not participating to the chemical formation of the resulting material. This work investigates a new templating pathway to nanostructured materials, where the template is also a reagent in the formation of the final material. This concept is described as “reactive templating” and opens a synthetic path toward materials which cannot be synthesised on a nanometre scale by classical templating approaches. Metal nitrides are such kind of materials. They are usually produced by the conversion of metals or metal oxides in ammonia flow at high temperature (T > 1000°C), which make the application of classical templating techniques difficult. Graphitic carbon nitride, g-C3N4, despite its fundamental and theoretical importance, is probably one of the most promising materials to complement carbon in material science and many efforts are put in the synthesis of this material. A simple polyaddition/elimination reaction path at high temperature (T = 550°C) allows the polymerisation of cyanamide toward graphitic carbon nitride solids. By hard templating, using nanostructured silica or aluminium oxide as nanotemplates, a variety of nanostructured graphitic carbon nitrides such as nanorods, nanotubes, meso- and macroporous powders could be obtained by nanocasting or nanocoating. Due to the special semi-conducting properties of the graphitic carbon nitride matrix, the nanostructured graphitic carbon nitrides show unexpected catalytic activity for the activation of benzene in Friedel-Crafts type reactions, making this material an interesting metal free catalyst. Furthermore, due to the chemical composition of g-C3N4 and the fact that it is totally decomposed at temperatures between 600°C and 800°C even under inert atmosphere, g-C3N4 was shown to be a good nitrogen donor for the synthesis of early transition metal nitrides at high temperatures. Thus using the nanostructured carbon nitrides as “reactive templates” or “nanoreactors”, various metal nitride nanostructures, such as nanoparticles and porous frameworks could be obtained at high temperature. In this approach the carbon nitride nanostructure played both the role of the nitrogen source and of the exotemplate, imprinting its size and shape to the resulting metal nitride nanostructure.
Die Nanostrukturierung anorganischer Materialien, d.h. die Kontrolle ihrer Form und Größe auf der Nanometerebene durch unterschiedliche Herstellungsverfahren, ist ein sich immer noch erweiterndes Forschungsgebiet. Eine solche Nanostrukturierung wird oft über sogenannte Templatierungsverfahren erreicht: Hier werden Formgeber (Template) mit definierter Morphologie und Größe verwendet und deren Struktur in ein neues Material abgebildet. Templatierungsverfahren können, je nach der Beschaffenheit des Templats, zwischen „weich“ und „hart“ unterschieden werden. Die Begriffe beziehen sich dabei vor allem auf die mechanische und thermische Stabilität der Template, d.h. weiche Template sind vornehmlich organischer, harte Template anorganischer Natur. Wo weiche Template in milden chemischen Verfahren eingesetzt werden, werden harte Template zur Herstellung von Materialien bei Hochtemperaturverfahren verwendet (z. B. poröse Kohlenstoffe). Allgemein dienen Template ausschließlich als Strukturgeber und gehen in keiner Weise in Form einer chemischen Reaktion in die Synthese des gewünschten Materials mit ein. Gegenstand dieser Arbeit ist ein neues Templatierungsverfahren: Die „reaktive Templatierung“. Hierbei wird das Templat - neben seiner Funktion als Strukturgeber – auch als Reagenz für die Synthese des Produktes verwendet. Dieser Synthese-Ansatz öffnet damit neue Wege für die Synthese von nanostrukturierten Materialien, die durch klassische Templatierungsansätze schwer zugänglich sind. Hierzu zählen zum Beispiel die Metallnitride. Üblicherweise werden Metallnitride über die Umsetzung von Metallen oder Metalloxiden in einem Ammoniakstrom bei Mindesttemperaturen von 1000°C gewonnen, was die Anwendung klassischer Templatierungsverfahren beinahe unmöglich macht. Darüber hinaus sind konzentrierte Lauge oder Flusssäure, welche zur Entfernung klassischer harter Template benötigt werden auch Aufschlussmittel für Metallnitride. Graphitisches Kohlenstoffnitrid, g-C3N4, ist wohl eines der meistversprechendsten Materialien um Kohlenstoff in der Materialwissenschaft zu ergänzen. Es wurden bereits viele potentielle Syntheseansätze beschrieben. Eine durch Groenewolt M. erstellte Route ist die thermisch induzierte Polykondensation von Cyanamid (NCNH2) bei 550°C. Da g-C3N4 sich zwischen 600°C und 800°C vollständig in NH3 und CxNyH-Gase zersetzt, ist es eine geeignete Festkörper-Stickstoffquelle für die Herstellung von Metalnitriden. Daher boten sich nanostrukturierte graphitische Kohlenstoffnitride als geeignete reaktive Template oder Nanoreaktoren zur Herstellung von nano-strukturierten Metalnitriden an. Die Templatierung der g-C3N4-Matrix wurde über klassische Harttemplatierungsverfahren erreicht. So konnte eine Vielzahl nano-strukturierter g-C3N4 Materialien synthetisiert werden wie zum Beispiel Nanostäbchen, Nanoröhren, mesoporöse oder makroporöse graphitische Kohlenstoffnitride. Diese haben sich interessanterweise, als metalfreie Katalysatoren für die Aktivierung von Benzol in Friedel-Crafts-Acylierung und -Alkylierung erwiesen. Durch die Infiltrierung der nano-strukturierten g-C3N4-Materialien mit diversen Metal-Präkursoren und nachfolgendem Tempern bei 800°C unter Schutzgas, konnten entsprechende nano-strukturierte Metalnitride, als Nanoabdrücke der vorgegebenen Kohlenstoffnitrid Nanostrukturen hergestellt werden. So konnten TiN, VN, GaN, AlGaN und TiVN Nanopartikel synthetisiert werden, macroporöse TiN/Kohlenstoff Komposite sowie TiN Hohlkugeln. Die so hergestellten Materialien erwiesen sich als effektive basische Katalysatoren für Aldol-Kondensations Reaktionen.
APA, Harvard, Vancouver, ISO, and other styles
3

Shah, Syed Imran Ullah. "Synthesis of transition metal nitrides and silicon based ternary nitrides." Thesis, University of Southampton, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580538.

Full text
Abstract:
Solution phase ammonolysis and sol-gel techniques that produce polymeric metal-amide precursors are of growing interest in the synthesis of nitride materials, which result from the thermal decomposition of the polymer. They can be used to control composition and to produce a large number of useful morphologies such as nanoparticles, films, monoliths, aerogels, and materials with large surface area such as foams. The synthesis of nitride materials using ammonolysis of metal amides and chlorides has so far largely focused on producing powders for applications such as catalysis, or thin films by chemical vapour deposition and related techniques. In this thesis, formation of tantalum and molybdenum nitride nanoparticles and metal-silicon nitride based nanocomposites have been synthesised using non-oxide precursors by solution phase ammonolysis and sol-gel methods respectively. For tantalum nitride nanoparticles Ta(NMe2)5 in THF was ammonolysed with ammonia at - 78 QC and the polymeric precursor was pyrolysed at various temperatures under ammonia. Amorphous TaN was obtained at 700 QC and below, while Ta3Ns was obtained at 800 QC under ammonia and also by re-annealing the amorphous samples at 800 QC under nitrogen. Molybdenum nitride powders were obtained by solution phase ammonolysis of MoCl, or Mo(NMe2)4 and further annealing the polymeric precursors on different temperatures. The chloride precursor resulted in hexagonal Mo'N, at 500 QC, or rock salt Mobl, at 700-1000 QC and mixture of both at 600 QC. The amide precursor resulted phase pure hexagonal MoNx at 600 QC and rock salt mixed with hexagonal at 1000 QC. Samples produced at 600 QC consisted mainly of nanotubes. Some decomposition to molybdenum metal was found in MoN obtained at 1000 QC from either precursor source. Co-ammonolysis of Ta(NMe2)5 or Mo(NMe2)4 with Si(NHMe)4 was carried out using sol-gel technique. Polymeric metal-silicon amide precursors were annealed at 600 or 1000 QC. The Ta/Si precursor produced amorphous nanocomposites and no phase segregation was observed even after high temperature annealing. With molybdenum the products were nanocomposites of molybdenum nitride particles, including nanotubes, supported on a silicon nitride amorphous matrix.
APA, Harvard, Vancouver, ISO, and other styles
4

Moseley, Michael William. "Study of III-nitride growth kinetics by molecular-beam epitaxy." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47641.

Full text
Abstract:
Since the initial breakthroughs in structural quality and p-type conductivity in GaN during the late 1980s, the group-III nitride material system has attracted an enormous amount of interest because of its properties and applications in both electronics and optoelectronics. Although blue light-emitting diodes have been commercialized based on this success, much less progress has been made in ultraviolet emitters, green emitters, and photovoltaics. This lack of development has been attributed to insufficient structural and electrical material quality, which is directly linked to the growth of the material. The objective of this work is to expand the understanding of III-nitride growth towards the improvement of current device capabilities and the facilitation of novel device designs. Group-III nitride thin films are grown by molecular-beam epitaxy in a pulsed, metal-rich environment. The growths of nitride binaries and ternaries are observed in situ by transient reflection high-energy electron diffraction (RHEED) intensities, which respond to the behavior of atoms on the growing surface. By analyzing and interpreting these RHEED signatures, a comprehensive understanding of nitride thin film growth is obtained. The growth kinetics of unintentionally doped GaN by metal-rich MBE are elucidated, and a novel method of in situ growth rate measurement is discovered. This technique is expanded to InN, highlighting the similarity in molecular-beam epitaxy growth kinetics between III-nitride binaries. The growth of Mg-doped GaN is then explored to increase Mg incorporation and electrical activation. The growth of InxGa1-xN alloys are investigated with the goal of eliminating phase separation, which enables single-phase material for use in photovoltaics. Finally, the growth of unintentionally doped and Mg-doped AlGaN is investigated towards higher efficiency light emitting diodes. These advancements in the understanding of III-nitride growth will address several critical problems and enable devices relying on consistent growth in production, single-phase material, and practical hole concentrations in materials with high carrier activation energies.
APA, Harvard, Vancouver, ISO, and other styles
5

吳誼暉 and Yee-fai Ng. "Heteroepitaxial growth of InN on GaN by molecular beam epitaxy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B29797846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ng, Yee-fai. "Heteroepitaxial growth of InN on GaN by molecular beam epitaxy /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25212175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vacek, Petr. "Rozsáhlé defekty v nitridech Ga a Al." Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2021. http://www.nusl.cz/ntk/nusl-447553.

Full text
Abstract:
III-nitridy běžně krystalizují v hexagonální (wurtzitové) struktuře, zatímco kubická (sfaleritová) struktura je metastabilní a má pouze mírně vyšší energii. Jejich fyzikální vlastnosti jsou silně ovlivněny přítomností rozsáhlých defektů, které jsou v těchto dvou strukturách od sebe odlišné. U wurtzitových nitridů se jedná primárně o vláknové dislokace. Některé vláknové dislokace tvoří hluboké energetické stavy v zakázaném pásu, kterými ovlivňují elektrické a optoelektronické vlastnosti těchto materiálů. Oproti tomu, kubické nitridy obsahují množství vrstevných chyb, které představují lokální transformace do stabilnější wurtzitové struktury. Cílem této práce je charakterizovat rozsáhlé defekty v obou krystalových strukturách pomocí elektronové mikroskopie, mikroskopie atomárních sil a rentgenové difrakce. Prokázali jsme, že vzorky GaN/AlN a AlN s orientací (0001) rostlé na substrátu Si (111) pomocí epitaxe z organokovových sloučenin obsahují velkou hustotu vláknových dislokací. Nejčastější jsou dislokace s Burgersovým vektorem s komponentou ve směru a wurtzitové struktury, následované dislokacemi s Burgersovým vektorem s komponentou ve směru a+c, zatímco dislokace s Burgersovým vektorem s c komponentou jsou relativně vzácné. Pravděpodobný původ vláknových dislokací je diskutován v souvislosti s různými mechanismy růstu těchto vrstev. Prizmatické vrstevné chyby byly nalezeny v tenkých nukleačních vrstvách AlN, ale v tlustších vrstvách již nebyly přítomny. Na rozhraní AlN / Si byla nalezena amorfní vrstva složená ze SiNx a částečně taky z AlN. Navrhujeme, že by tato amorfní vrstva mohla hrát významnou roli při relaxaci misfitového napětí. Analýza elektrické aktivity rozsáhlých defektů v AlN byla provedena pomocí měření proudu indukovaného elektronovým svazkem. Zjistili jsme, že vláknové dislokace způsobují slabý pokles indukovaného proudu. Díky jejich vysoké hustotě a rovnoměrnému rozložení však mají větší vliv na elektrické vlastnosti, než mají V-defekty a jejich shluky. Topografické a krystalografické defekty byly studovány na nežíhaných a žíhaných nukleačních vrstvách kubického GaN deponovaných na 3C-SiC (001) / Si (001) substrátu. Velikost ostrůvků na nežíhaných vzorcích se zvyšuje s tloušťkou nukleační vrstvy a po žíhání se dále zvětšuje. Po žíhání se snižuje pokrytí substrátu u nejtenčích nukleačních vrstev v důsledku difúze a desorpce (nebo leptání atmosférou reaktoru). Vrstevné chyby nalezené ve vrstvách GaN, poblíž rozhraní se SiC, byly většinou identifikovány jako intrinsické a byly ohraničené Shockleyho parciálními dislokacemi. Jejich původ byl diskutován, jako i vliv parciálních dislokací na relaxaci misfitového napětí. Díky velkému množství vrstevných chyb byly podrobněji studovány jejich interakce. Na základě našich zjištění jsme vyvinuli teoretický model popisující anihilaci vrstevných chyb v kubických vrstvách GaN. Tento model dokáže předpovědět pokles hustoty vrstevných chyb se zvyšující se tloušťkou vrstvy.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Hongji [Verfasser], and Bettina [Akademischer Betreuer] Lotsch. "Investigations into carbon nitrides and carbon nitride derivatives / Hongji Wang. Betreuer: Bettina Lotsch." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2013. http://d-nb.info/1047543478/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Du, Li. "Bulk crystal growth, characterization and thermodynamic analysis of aluminum nitride and related nitrides." Diss., Kansas State University, 2011. http://hdl.handle.net/2097/8625.

Full text
Abstract:
Doctor of Philosophy
Department of Chemical Engineering
James H. Edgar
The sublimation recondensation crystal growth of aluminum nitride, titanium nitride, and yttrium nitride were explored experimentally and theoretically. Single crystals of these nitrides are potentially suitable as substrates for AlGaInN epitaxial layers, which are employed in ultraviolet optoelectronics including UV light-emitting diodes and laser diodes, and high power high frequency electronic device applications. A thermodynamic analysis was applied to the sublimation crystal growth of aluminum nitride to predict impurities transport (oxygen, carbon, and hydrogen) and to study the aspects of impurities incorporation for different growth conditions. A source purification procedure was established to minimize the impurity concentration and avoid degradation of the crystal’s properties. More than 98% of the oxygen, 99.9% of hydrogen and 90% of carbon originally in the source was removed. The AlN crystal growth process was explored in two ways: self-seeded growth with spontaneous nucleation directly on the crucible lid or foil, and seeded growth on SiC and AlN. The oxygen concentration was 2 ~ 4 x 1018cm-3, as measured by secondary ion mass spectroscopy in the crystals produced by self-seeded growth. Crystals grown from AlN seeds have visible grain size expansion. The initial AlN growth on SiC at a low temperature range (1400°C ~1600°C) was examined to understand the factors controlling nucleation. Crystals were obtained from c-plane on-axis and off-axis, Si-face and C-face, as well as m-plane SiC seeds. In all cases, crystal growth was fastest perpendicular to the c-axis. The growth rate dependence on temperature and pressure was determined for TiN and YN crystals, and their activation energies were 775.8±29.8kJ/mol and 467.1±21.7kJ/mol respectively. The orientation relationship of TiN (001) || W (001) with TiN [100] || W [110], a 45o angle between TiN [100] and W [100], was seen for TiN crystals deposited on both (001) textured tungsten and randomly orientated tungsten. Xray diffraction confirmed that the YN crystals were rock-salt structure, with a lattice constant of 4.88Å. Cubic yttria was detected in YN sample from the oxidation upon its exposed to air for limited time by XRD, while non-cubic yttria was detected in YN sample for exposures more than one hour by Raman spectra.
APA, Harvard, Vancouver, ISO, and other styles
10

Cordes, Niklas [Verfasser], and Wolfgang [Akademischer Betreuer] Schnick. "Ammonothermal synthesis of functional nitride oxides and ternary nitrides / Niklas Cordes ; Betreuer: Wolfgang Schnick." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1192215508/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nitrides"

1

H, Edgar James, and INSPEC (Information service), eds. Properties of group III nitrides. London: INSPEC, Institution of Electrical Engineers, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

service), INSPEC (Information, and Knovel (Firm), eds. Properties of group III nitrides. London: IEE, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Janik, Jerzy Franciszek. Charakterystyka reakcji i procesów wytwarzania specyficznych form materiałowych azotku glinu - AIN oraz azotku boru - BN z prekursorów chemicznych. 2nd ed. Kraków: Wydawnictwa AGH, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liles, K. J. Mechanical and physical properties of particulate composites in the system titanium nitride-alumina-aluminum nitride. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liles, K. J. Mechanical and physical properties of particulate composites in the system titanium nitride-alumina-aluminum nitride. Washington, DC: Dept. of the Interior, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Razeghi, M. Optoelectronic devices: III-nitrides. Amsterdam: Elsevier, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pierson, Hugh O. Handbook of refractory carbides and nitrides: Properties, characteristics, processing, and applications. Park Ridge, N.J: Noyes Publications, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Omar, Manasreh Mahmoud, ed. III-nitride semiconductors: Electrical, structural, and defects properties. Amsterdam: Elsevier, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

B, Gil, ed. Low-dimensional nitride semiconductors. Oxford: Oxford University Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

United States. National Aeronautics and Space Administration., ed. Manufacture of sintered silicon nitrides. Washington DC: National Aeronautics and Space Administration, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nitrides"

1

Šajgalík, Pavol, Zoltán Lenčéš, and Miroslav Hnatko. "Nitrides." In Ceramics Science and Technology, 59–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631735.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Šajgalík, Pavol, Zoltán Lenčéš, and Miroslav Hnatko. "Nitrides." In Ceramics Science and Technology, 59–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhadeshia, Harshad K. D. H. "Nitrides." In Theory of Transformations in Steels, 445–62. Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003056782-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Honig, J. M., and H. R. Harrison. "Metallic Nitrides." In Inorganic Reactions and Methods, 254. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Becke-Goehring, Margot, William L. Jolly, Ulrich De La Camp, James D. Macomber, and H. Fritz Woeller. "Sulfur Nitrides." In Inorganic Syntheses, 123–28. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132371.ch40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferreyra, Romualdo A., Congyong Zhu, Ali Teke, and Hadis Morkoç. "Group III Nitrides." In Springer Handbook of Electronic and Photonic Materials, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48933-9_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chivers, T. "From Sulfur Nitrides." In Inorganic Reactions and Methods, 64–65. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145197.ch68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Teke, Ali, and Hadis Morkoç. "Group III Nitrides." In Springer Handbook of Electronic and Photonic Materials, 753–804. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29185-7_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Doménech-Carbó, Antonio. "Sulfides, Nitrides, Phosphides." In Electrochemistry of Porous Materials, 149–63. 2nd ed. Names: Domeénech-Carboó, Antonio, author. Title: Electrochemistry of porous materials / Antonio Domeénech Carboó. Description: Second edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429351624-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Morkoç, Hadis. "General Properties of Nitrides." In Nitride Semiconductors and Devices, 8–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58562-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nitrides"

1

Petrova, L. "Nitriding of High Speed Steel for Improvement of Tools Resistance." In Modern Trends in Manufacturing Technologies and Equipment. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901755-36.

Full text
Abstract:
Abstract. The article is devoted to the study of the gas nitriding process, which makes it possible to obtain high-quality diffusion layers in high-speed steel M2 on the basis of an internal nitriding zone without a brittle nitride zone. The results of studies of the nitrided steel phase composition with a change of the saturating atmosphere during dilution of ammonia by hydrogen are presented. An increase in the resistance of the nitrided tool when drilling structural steel is shown, which is associated with the dispersion hardening of the internal nitriding zone with tungsten nitrides.
APA, Harvard, Vancouver, ISO, and other styles
2

Santhanam, Sridhar, Kei-Peng Jen, and Zachary N. Wing. "Enhancing Toughness of Silicon Nitrides With Nanoscale Additions." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68871.

Full text
Abstract:
Silicon nitride ceramics for applications in demanding environments require high toughness and adequate hardness. A well known route to making tough silicon nitride compositions is to control the grain size distribution. For beta silicon nitrides, the grain shapes in the form of their acicularity is known to be very important too. In this paper, we report on the use of multiple strategies to achieve increased toughness and toughening in silicon nitrides. These strategies include the use of a blend of nano-scale and micron-scale silicon nitride powders, the use of nano-scale sintering aids, and the addition of carbon nanotubes. Microstructures and mechanical properties are determined for these hot-pressed ceramics and are compared with a baseline silicon nitride prepared with conventional micron-scale powders. Hardness and fracture toughness are determined at room temperature using hardness indents produced by a macro Vickers hardness indenter. The toughening ability of these ceramics are compared by R-curve measurements. Grain boundary debonding and crack path deviation are identified as toughening mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
3

Steiner, Tobias, Sai Ramudu Meka, Eric J. Mittemeijer, and Thomas Waldenmaier. "Internal Nitriding of Fe-Cr-Mo Alloys— Precipitation of Mixed Nitrides and Role of the Cr/Mo-Ratio." In HT 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.ht2015p0620.

Full text
Abstract:
Abstract Controlled gaseous nitriding of ternary Fe-Cr-Mo alloys leads to the development of ternary, mixed nitrides in the ferrite matrix, which show complex chemical, structural, and morphological transformations as a function of nitriding time: initially continuous precipitation of fine, coherent, cubic, NaCl-type (Cr,Mo)Nx nitride platelets develop, which later transform to a novel, hexagonal CrMoN2 nitride by a discontinuous precipitation reaction. Some of relatively coarse cubic nitrides also occur in the ferrite lamellae. The Fe-Cr-Mo alloys with varying Cr/Mo ratio, but all containing a total alloying element (Cr+Mo) content of 2 at.%, showed similar kinetics of continuous precipitation of cubic (Cr,Mo)Nx nitride. The kinetics of the discontinuous precipitation reaction is faster for the alloys with lower Cr/Mo ratio.
APA, Harvard, Vancouver, ISO, and other styles
4

Lenoe, E. M., D. Neal, M. Vangel, M. Boehmer, and J. E. Siebels. "Interlaboratory Comparison of Flexural Strength of Structural Ceramics." In ASME 1985 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-gt-225.

Full text
Abstract:
This paper presents results of statistical evaluation of flexural strength of various silicon nitrides and silicon carbides. The interlaboratory comparison involved both analytical and experimental procedures. For instance, two types of reaction bonded silicon nitride from the same production lots were evaluated using different test fixtures and experimental methods. A fairly extensive data base on five types of nitrides and carbides was evaluated using both conventional and advanced statistical techniques. The various differences observed are discussed in the body of the paper.
APA, Harvard, Vancouver, ISO, and other styles
5

Rowan, Olga K., and Michael A. Pershing. "Alloying Effect on Nitrided Case Characteristics of Nitralloy 135M and AISI 4140 Steel." In HT2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.ht2021p0117.

Full text
Abstract:
Abstract Nitriding surface hardening is commonly used on steel components for high wear, fatigue and corrosion applications. Case hardening results from white layer formation and coherent alloy nitride precipitates in the diffusion zone. This paper evaluates the microstructure development in the nitrided case and its effects on the hardness in both the white layer and the substrate for two industry nitriding materials, Nitralloy 135M and AISI 4140. Computational thermodynamic calculations were used to identify the type and amount of stable alloy nitrides precipitation and helped explain the differences in the white layer hardness, degree of porosity at the surface, and the hardening effect within the substrate. Some initial insights toward designing nitriding alloys are shown.
APA, Harvard, Vancouver, ISO, and other styles
6

van Roode, Mark, Jeffrey R. Price, David W. Richerson, Vijay Parthasarathy, and George A. Graves. "Ceramic Stationary Gas Turbine Program: Monolithic Ceramic Component Development Summary." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0457.

Full text
Abstract:
In the Ceramic Stationary Gas Turbine (CSGT) development program, sponsored by the U.S. Department of Energy (DOE) Offices of Industrial Technologies and Power Technologies (OIT/OPT), monolithic silicon nitride and silicon carbide ceramics were evaluated for application as structural materials for hot section components in an industrial gas turbine, the Solar Centaur 50S. First generation blades of GN10, NT164, and SN253 silicon nitrides, second generation blades of AS800 and SN281 silicon nitrides, and first generation SN-88 silicon nitride nozzles were evaluated in rigs and test engines. Hexoloy SA silicon carbide combustor liner tiles were tested in a subscale rig. The selection and evaluation of monolithic materials over the duration of the CSGT program (1992 to 2000) will be reviewed.
APA, Harvard, Vancouver, ISO, and other styles
7

KUDRAWIEC, R. "ELECTROMODULATION SPECTROSCOPY OF SEMICONDUCTOR NANOSTRUCTURES: III-NITRIDES AND DILUTE NITRIDES." In Proceedings of the International Conference on Nanomeeting 2009. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814280365_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Choi, Sung R. "Foreign Object Damage in Gas-Turbine Grade Silicon Nitrides by Silicon Nitride Ball Projectiles." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59031.

Full text
Abstract:
Foreign object damage (FOD) behavior of two gas-turbine grade silicon nitrides (AS800 and SN282) was determined with a considerable sample size at ambient temperature using impact velocities ranging from 50 to 225 m/s by 1.59-mm diameter silicon nitride ball projectiles. The degree of impact damage as well as of post-impact strength degradation increased with increasing impact velocity, and was greater in SN282 than in AS800 silicon nitride. The critical impact velocity in which target specimens fractured catastrophically was remarkably low: about 200 and 130 m/s, respectively, for AS800 and SN282. The difference in the critical impact velocity and impact damage between the two target silicon nitrides was attributed to the fracture toughness of the target materials. The FOD by silicon nitride projectiles was significantly greater than that by steel ball projectiles. Prediction of impact force was made based on a yield model and compared with the conventional Hertzian contact-stress model.
APA, Harvard, Vancouver, ISO, and other styles
9

Suzuki, M., S. Sodeoka, T. Inoue, K. Ueno, and T. Valente. "Fabrication of Ti-Nitrides by Reactive Plasma Spray." In ITSC 1999, edited by E. Lugscheider and P. A. Kammer. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 1999. http://dx.doi.org/10.31399/asm.cp.itsc1999p0265.

Full text
Abstract:
Abstract Reactive plasma spray is a processing method which combines synthesis and deposition of reaction products in situ. This paper evaluates the effects of the chamber gas pressure, the plasma gas composition and the spray distance on the production of titanium nitrides by means of reactive plasma spraying. It describes and discusses the results obtained from experimental tests for fabrication of titanium/titanium nitride coatings onto steel substrates, with particular reference to the effects of pressure inside the spraying chamber. Paper includes a German-language abstract.
APA, Harvard, Vancouver, ISO, and other styles
10

Felts, John T. "Dielectric films deposited with the C-MAG™ sputtering process." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.we1.

Full text
Abstract:
The introduction of the C-MAG™ rotary cathode has ushered in a new era for thin film sputter deposition of silicon oxides and nitrides. For the first time, production large area DC sputtering of both oxides and nitrides of silicon is possible. The coating is deposited at rates consistent with existing glass sputtering lines and produces near stoichiometric films. The thin films are amorphous, resistant to abrasion, adhere well to plastics, metals and glass, and provide a barrier to gases. The combination of the silicon oxide and nitride coatings with Airco Coating Technology's existing sputtering processes ushers in a new and exciting time for thin film stack development.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nitrides"

1

Monson, Todd C., and Charles Pearce. Electrochemical Solution Growth of Magnetic Nitrides. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1172790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

O`Brien, M. H. Joining of silicon nitrides using oxynitride glasses. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10134854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vartuli, C. B., J. W. Lee, and J. D. MacKenzie. ICP dry etching of III-V nitrides. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/541909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Doolittle, William A. Systematic Study of p-type Doping and Related Defects in III-Nitrides: Pathway toward a Nitride HBT. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada582638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Johnson, Michael D., and Jeremy M. Smith. Nitrogen Atom Transfer From High Valent Iron Nitrides. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1236964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Norman, Arlan D. New Polymer Precursors to Boron and Silicon Nitrides. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada210287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vartuli, C. B., S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, E. S. Lambers, and J. C. Zolper. High temperature surface degradation of III-V nitrides. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/231697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Palacios, Tomas, M. Azize, J. W. Chung, H. S. Lee, B. Lu, and D. S. Lee. Reduction of Parasitic Delays in Nitrides-based Transistors. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada530594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zolper, J. C., S. J. Pearton, J. S. Williams, H. H. Tan, R. J. Jr Karlicek, and R. A. Stall. Ion implantation and annealing studies in III-V nitrides. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/432983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

S. Ted Oyama and David F. Cox. New catalysts for coal processing: Metal carbides and nitrides. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/754428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography