Academic literature on the topic 'Nitride Thin Films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nitride Thin Films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Nitride Thin Films"

1

Shu, Rui. "Nonstoichiometric Multicomponent Nitride Thin Films." Licentiate thesis, Linköpings universitet, Tunnfilmsfysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170529.

Full text
Abstract:
High entropy ceramics have rapidly developed as a class of materials based on high entropy alloys; the latter being materials that contain five or more elements in near-equal proportions. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical, electrical and chemical properties. In this thesis, high entropy ceramic films, (TiNbZrTa)Nx were deposited using reactive magnetron sputtering with segmented targets. The stoichiometry x was tuned with two deposition parameters, i.e., substrate temperature and nitrogen flow ratio fN, their effect on microstructure and mechanical, electric, and electrochemical properties were investigated. Understoichiometric MeNx (Me = TiNbZrTa, 0.25 ≤ x ≤ 0.59) films were synthesized at a constant fN when substrate temperature was varied from room temperature (RT) to 700 °C. For low-temperature deposition, the coatings exhibited fcc solid-solution polycrystalline structures. A NaCl-type structure with (001) preferred orientation was observed in MeN0.46 coating deposited at 400 ºC, while an hcp structure was found for the coatings deposited above 500 ºC. The maximum hardness value of 26 GPa as well as the highest <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Ctiny%7BH/E_r%7D" />  and <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Ctiny%7BH%5E3%7D%0A%0A" /><img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Ctiny%7B/E_r%5E2%7D%20" />  values (0.12 and 0.34 GPa) were obtained for the MeN0.46 coating. These films exhibited low RT electrical resistivities. In 0.1 M H2SO4 aqueous solution, the most corrosion resistant film was MeN0.46 featured dense structure and low roughness. The MeNx films (x=0, 0.57 &lt; x ≤ 0.83) were deposited with different fN. The maximum hardness was achieved at 22.1 GPa for MeN0.83 film. Their resistivities increased from 95 to 424 μΩcm with increasing nitrogen content. The corrosion resistance is related to the amount of nitrogen in the films. The corrosion current density was around 10-8 A/cm2, while the films with lower nitrogen contents (x &lt; 0.60) exhibited a nearly stable current plateau up to 4.0 V, similar to the metallic films, while the films with a higher nitrogen content only featured a plateau up to 2.0 V, above which a higher nitrogen content resulted in higher currents. The reason was that the oxidation of these films at potentials above about 2.0 V vs. Ag/AgCl resulted in the formation of porous oxide layers as significant fraction of the generated N2 was lost to the electrolyte. Hence, these observed effects of deposition temperature and nitrogen content on the overall properties of nonstoichiometric MeNx films provide insights regarding protective multicomponent nitride films, e.g. as corrosion resistant coatings on metallic bipolar plates in fuel cells or batteries.
APA, Harvard, Vancouver, ISO, and other styles
2

Khoshman, Jebreel M. "Spectroscopic ellipsometry charactarization of single and multilayer aluminum nitride / indium nitride thin film systems." Ohio : Ohio University, 2005. http://www.ohiolink.edu/etd/view.cgi?ohiou1129584189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kerdsongpanya, Sit. "Scandium Nitride Thin Films for Thermoelectrics." Licentiate thesis, Linköpings universitet, Tunnfilmsfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85917.

Full text
Abstract:
Thermoelectric devices are one of the promising energy harvesting technologies, since they can convert heat (i.e. a temperature gradient) to electricity. This result leads us to use them to harvest waste heat from heat engines or in power plants to generate usable electricity. Moreover, thermoelectric devices can also perform cooling. The conversion process is clean, with no emission of greenhouse gases during the process. However, the converting efficiency of thermoelectrics is very low because of the materials limitations of the thermoelectric figure of merit (ZTm). Thus, there is high demand to maximize the ZTm. I have discovered that ScN has high power factor 2.5 mW/(mK2) at 800 K, due to low metalliclike electrical resistivity (∼3.0 μΩm) with retained relatively large Seebeck coefficient of -86 μV/K. The ScN thin films were grown by reactive dc magnetron sputtering from Sc targets. For ScN, X-ray diffraction, supported by transmission electron microscopy, show that we can obtain epitaxial ScN(111) on Al2O3(0001). We also reported effects on thermoelectric properties of ScN with small changes in the composition with the power factor changing one order of magnitude depending on e.g. oxygen, carbon and fluorine content which were determined by elastic recoil detection analysis. The presence of impurities may influence the electronic density of states or Fermi level (EF) which could yield enhancement of power factor. Therefore, the effects of defects and impurities on the electronic density of states of scandium nitride were investigated using first-principles calculations with general gradient approximation and hybrid functionals for the exchange correlation energy. Our results show that for Sc and N vacancies can introduce asymmetric peaks in the density of states close to the Fermi level. We also find that the N vacancy states are sensitive to total electron concentration of the system due to their possibility for spin polarization. Substitutional point defects shift the Fermi level in the electronic band according to their valence but do not introduce sharp features. The energetics and electronic structure of defect pairs are also studied. By using hybrid functionals, a correct description of the open band gap of scandium nitride is obtained, in contrast to regular general gradient approximation. Our results envisage ways for improving the thermoelectric figure of merit of ScN by electronic structure engineering through stoichiometry tuning and doping.
APA, Harvard, Vancouver, ISO, and other styles
4

Neidhardt, Jörg. "Fullerene-like carbon nitride thin solid films /." Linköping : Univ, 2004. http://www.bibl.liu.se/liupubl/disp/disp2004/tek877s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sanchez, Mathon Gustavo. "Piezoelectric aluminum nitride thin films by PECVD." Limoges, 2009. https://aurore.unilim.fr/theses/nxfile/default/9224e391-3c48-4c10-9166-c2a2bed3c5f4/blobholder:0/2009LIMO4007.pdf.

Full text
Abstract:
Des couches minces polycristallines d'AIN ont été réalisées en utilisant une technique CVD assistée par plasma micro-onde. Les paramètres, distance plasma - injecteur, température du substrat, polarisation RF du porte - substrat ont été optimisés. Il a été possible de contrôler l’orientation préférentielle &lt;0001&gt; ou &lt;1010&gt;, intéressantes pour des applications piézoélectriques. Les mécanismes de croissance qui ont conduit au développement des microstructures dans les différentes conditions ont été expliqués. La comparaison avec une technique PVD a permis d’enricher la discussion. Les performances piézoélectriques des couches obtenues ont été caractérisées par construction des dispositifs électroacoustiques d’onde de surface et d’onde de volume. Seules les couches orientées &lt;0001&gt; ont montré une réponse piézoélectrique et une vitesse acoustique adéquates. Une analyse exhaustive a été conduite pour expliquer les possibles raisons de ces comportements<br>Polycrystalline aluminum nitride thin films were produced with a microwave-plasma enhanced chemical vapor deposition technique. The plasma-injector distance, the substrate temperature and the RF bias were the main variables which allowed achieving this objective. At the time, it was possible to control the preferential orientation as &lt;0001&gt; or &lt;1010&gt;, both interesting for piezoelectric applications. The growth mechanisms that conducted to film microstructure development under different process conditions were explained, enriched by the comparison with a physical vapor deposition sputtering technique. The obtained films were characterized in their piezoelectric performance, including the construction of surface acoustic wave devices and bulk acoustic wave devices. Adequate piezoelectric response and acoustic velocities were obtained for &lt;0001&gt; oriented films, while &lt;1010&gt; oriented films did not show piezoelectric response under the configurations essayed. An extensive analysis was done in order to explain these behaviors
APA, Harvard, Vancouver, ISO, and other styles
6

Knight, Patrick J. "Nitride formation at silicon surfaces." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Taylor, Matthew Bruce, and matthew taylor@rmit edu au. "A Study of Aluminium Nitride and Titanium Vanadium Nitride Thin Films." RMIT University. Applied Science, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080529.151820.

Full text
Abstract:
Thin film coatings are used to improve the properties of components and products in such diverse areas as tool coatings, wear resistant biological coatings, miniature integrated electronics, micro-mechanical systems and coatings for optical devices. This thesis focuses on understanding the development of intrinsic stress and microstructure in coatings of the technologically important materials of aluminium nitride (AlN) and titanium vanadium nitride (TiVN) deposited by filtered cathodic arc deposition. Thin films of AlN are fabricated under a variety of substrate bias regimes and at different deposition rates. Constant substrate bias was found to have a significant effect on the stress and microstructure of AlN thin films. At low bias voltages, films form with low stress and no preferred orientation. At a bias voltage of -200 V, the films exhibited the highest compressive stress and contained crystals preferentially oriented with their c axis in the plane of the film. At the highest bias of -350 V, the film forms with low stress yet continue to contain crystallites with their c axis constrained to lie in the plane of the film. These microstructure changes with bias are explained in terms of an energy minimisation model. The application of a pulsed high voltage bias to a substrate was found to have a strong effect on the reduction of intrinsic stress within AlN thin films. A model has been formulated that predicts the stress in terms of the applied voltage and pulsing rate, in terms of treated volumes known as thermal spikes. The greater the bias voltage and the higher the pulse rate, the greater the reduction in intrinsic stress. At high pulsing and bias rates, a strong preference for the c axis to align perpendicular to the substrate is seen. This observation is explained by dynamical effects of the incident ions on the growing film, encouraging channelling and preferential sputtering. For the first time, the effect of the rate of growth on AlN films deposited with high voltage pulsed bias was investigated and found to significantly change the stress and microstructure. The formation of films with highly tensile stress, highly compressive stress and nano-composites of AlN films containing Al clusters were seen. These observations are explained in terms of four distinct growth regions. At low rates, surface diffusion and shadowing causes highly porous structures with tensile stress; increased rates produced Al rich films of low stress; increasing the growth rate further led to a dense AlN film under compressive stress and the highest rates produce dense, low stress, AlN due to increased levels of thermal annealing. Finally this thesis analyses the feasibility of forming ternary alloys of high quality TiVN thin films using a dual cathode filtered cathodic arc. The synthesised films show exceptional hardness (greater than either titanium nitride or vanadium nitride), excellent mixing of the three elements and interesting optical properties. An optimum concentration of 23% V content was found to give the highest stress and hardness.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Xuefei. "Synthesis and Characterization of Zr1-xSixN Thin Film Materials." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/ZhangX2007.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Anutgan, Mustafa. "Investigation Of Plasma Deposited Boron Nitride Thin Films." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608611/index.pdf.

Full text
Abstract:
Hexagonal boron nitride (h-BN) thin films are deposited by plasma enhanced chemical vapor deposition (PECVD). Effects of heat treatment and source gases on the structure and physical properties are investigated. Chemical bonding is analyzed in comparison with the better understood isoelectronic carbon compound, graphite. It seems that the basic difference between h-BN and graphite arises from the different electronegativities of boron and nitrogen atoms. Optical absorptions in UV-visible range for crystalline and amorphous structures are outlined. The expressions used for the evaluation of mechanical stress induced in thin films are derived. The deposited films are considered to be turbostratic as they do not exhibit the characteristic optical absorption spectra of a crystal. A new system, stylus profilometer, is implemented and installed for thin film thickness and mechanical stress measurements. Hydrogen atom density within the films, estimated from FTIR spectroscopy, is found to be a major factor affecting the order and mechanical stress of the films. Heat treatment of the films reduces the hydrogen content, does not affect the optical gap and slightly increases the Urbach energy probably due to an increased disorder. Increasing the nitrogen gas flow rate in the source gas results in more ordered films. The virtual crystal of these films is detected to be unique. Relative bond concentrations of the constituent elements indicate a ternary boron-oxygen-nitrogen structure. The physical properties of h-BN such as high resistivity and wide band gap seem suitable for optoelectronic applications such as gate dielectrics in thin film transistors and light emitting devices in the blue region.
APA, Harvard, Vancouver, ISO, and other styles
10

Joelsson, Torbjörn. "Nanostructural design of transition metal nitride thin films /." Linköping : Dept. of physics and measurement technology, Univ, 2005. http://www.bibl.liu.se/liupubl/disp/disp2005/tek923s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography