To see the other types of publications on this topic, follow the link: NiMnGa Films.

Journal articles on the topic 'NiMnGa Films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'NiMnGa Films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Vovk, Andriy, Leszek Malkinski, Vladimir Golub, Charles O’Connor, Zhenjun Wang, and Jinke Tang. "Magnetotransport in NiMnGa thin films." Journal of Applied Physics 97, no. 10 (May 15, 2005): 10C503. http://dx.doi.org/10.1063/1.1847411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dubowik, J., I. Gościańska, and Y. V. Kudryavtsev. "NiMnGa Ferromagnetic Shape Memory Films." Czechoslovak Journal of Physics 54, S4 (December 2004): 213–16. http://dx.doi.org/10.1007/s10582-004-0066-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Golub, Vladimir O., Andriy Ya Vovk, Leszek Malkinski, Charles J. O’Connor, Zhenjun Wang, and Jinke Tang. "Anomalous magnetoresistance in NiMnGa thin films." Journal of Applied Physics 96, no. 7 (October 2004): 3865–69. http://dx.doi.org/10.1063/1.1771474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Żuberek, R., O. M. Chumak, A. Nabiałek, M. Chojnacki, I. Radelytskyi, and H. Szymczak. "Magnetocaloric effect and magnetoelastic properties of NiMnGa and NiMnSn Heusler alloy thin films." Journal of Alloys and Compounds 748 (June 2018): 1–5. http://dx.doi.org/10.1016/j.jallcom.2018.03.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wuttig, Manfred, Corneliu Craciunescu, and Jian Li. "Phase Transformations in Ferromagnetic NiMnGa Shape Memory Films." Materials Transactions, JIM 41, no. 8 (2000): 933–37. http://dx.doi.org/10.2320/matertrans1989.41.933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hakola, A., O. Heczko, A. Jaakkola, T. Kajava, and K. Ullakko. "Pulsed laser deposition of NiMnGa thin films on silicon." Applied Physics A 79, no. 4-6 (September 2004): 1505–8. http://dx.doi.org/10.1007/s00339-004-2831-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chernenko, Volodymyr A., Ricardo López Antón, Stefano Besseghini, José M. Barandiarán, Makoto Ohtsuka, Andrea Gambardella, and Peter Müllner. "Magnetization and Domain Patterns in Martensitic NiMnGa Films on Si(100) Wafer." Advanced Materials Research 52 (June 2008): 35–43. http://dx.doi.org/10.4028/www.scientific.net/amr.52.35.

Full text
Abstract:
A series of Ni51.4Mn28.3Ga20.3 films sputter-deposited on Si(100) wafer (with 500 nm thick buffer layer of SiNx) and annealed at 800 oC for 1h. are investigated with respect to their transformation behavior and magnetic properties. The film thickness, d, varies from 0.1 to 5.0 μm. Resistivity measurements reveal martensitic transformation above room temperature for all the films except for 0.1μm-thick film which is transforming at much lower temperature. The magnetic characteristics of martensitic films such as susceptibility and anisotropy field extracted from the inplane and out-of-plane magnetization curves show film thickness dependence likewise Curie temperature obtained from the resistivity curves. The surface topography and micromagnetic structure are studied by scanning probe microscopy. A stripe magnetic domain pattern featuring a large out-of-plane magnetization component is found in the films. The domain width, δ, depends on the film thickness, d, as δ ~ d .
APA, Harvard, Vancouver, ISO, and other styles
8

Kohl, Manfred, Marcel Gueltig, and Frank Wendler. "Coupled Simulation of Thermomagnetic Energy Generation Based on NiMnGa Heusler Alloy Films." Shape Memory and Superelasticity 4, no. 1 (January 19, 2018): 242–55. http://dx.doi.org/10.1007/s40830-018-0148-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, T. J., L. Lu, M. O. Lai, and J. Ding. "Growth and magnetic properties of NiMnGa thin films prepared by pulsed laser ablation." Smart Materials and Structures 14, no. 5 (August 24, 2005): S293—S296. http://dx.doi.org/10.1088/0964-1726/14/5/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rumpf, H., C. M. Craciunescu, H. Modrow, Kh Olimov, E. Quandt, and M. Wuttig. "Successive occurrence of ferromagnetic and shape memory properties during crystallization of NiMnGa freestanding films." Journal of Magnetism and Magnetic Materials 302, no. 2 (July 2006): 421–28. http://dx.doi.org/10.1016/j.jmmm.2005.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, Changan, Xiaogong Fang, Aihua Zhang, Min Zeng, Zhen Fan, Deyang Chen, Xingsen Gao, and Xubing Lu. "Coupling of ferroelastic strain and ferroelectric phase transition in NiMnGa/Pb0.97La0.02(Zr0.95Ti0.05)O3 bilayered films." Ceramics International 44, no. 14 (October 2018): 17199–203. http://dx.doi.org/10.1016/j.ceramint.2018.06.176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kim, Hyoun Woo, Han Gil Na, Dong Sub Kwak, Yong Jung Kwon, Tran Van Khai, Chongmu Lee, and Jong Hoon Jung. "Fabrication and magnetic properties of In2O3/NiMnGa core–shell nanowires." Thin Solid Films 546 (November 2013): 219–25. http://dx.doi.org/10.1016/j.tsf.2013.03.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sharma, Amit, S. Mohan, and Satyam Suwas. "Development of bi-axial preferred orientation in epitaxial NiMnGa thin films and its consequence on magnetic properties." Acta Materialia 113 (July 2016): 259–71. http://dx.doi.org/10.1016/j.actamat.2016.04.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Arivanandhan, Gowtham, Zixiong Li, Sabrina Curtis, Prasanth Velvaluri, Eckhard Quandt, and Manfred Kohl. "Temperature Homogenization of Co-Integrated Shape Memory—Silicon Bimorph Actuators." Proceedings 64, no. 1 (November 20, 2020): 8. http://dx.doi.org/10.3390/iecat2020-08501.

Full text
Abstract:
The high work density and beneficial downscaling of shape memory alloy (SMA) actuation performance provide a basis for the development of actuators and systems at microscales. Here, we report a novel monolithic fabrication approach for the co-integration of SMA and Si microstructures to enable SMA-Si bimorph microactuation. Double-beam cantilevers are chosen for the actuator layout to enable electrothermal actuation by Joule heating. The SMA materials under investigation are NiMnGa and NiTi(Hf) films with tunable phase transformation temperatures. We show that Joule heating of the cantilevers generates increasing temperature gradients for decreasing cantilever size, which hampers actuation performance. In order to cope with this problem, a new method for design optimization is presented based on finite element modeling (FEM) simulations. We demonstrate that temperature homogenization can be achieved by the design of additional folded beams in the perpendicular direction to the active beam cantilevers. Thereby, power consumption can be reduced by more than 35 % and maximum deflection can be increased up to a factor of 2 depending on the cantilever geometry.
APA, Harvard, Vancouver, ISO, and other styles
15

Panda, A. K., Satnam Singh, S. K. Das, A. Mitra, M. Koblischka, Brice Jamieson, and Saibal Roy. "Effect of magnetizing field on the martensitic transformations in a melt spun NiMnGa alloy." Journal of Physics D: Applied Physics 42, no. 24 (November 25, 2009): 245004. http://dx.doi.org/10.1088/0022-3727/42/24/245004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yang, Bo, Zong Bin Li, Yu Dong Zhang, Claude Esling, Gao Wu Qin, Xiang Zhao, and Liang Zuo. "Identification of Crystal Structure and Crystallographic Features of NiMnGa Thin Films by Combination of X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD)." Materials Science Forum 783-786 (May 2014): 2561–66. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.2561.

Full text
Abstract:
In this work, NiMnGa thin film composed of non-modulated martensite (NM) and seven-layered modulated martensite (7M) was produced. The crystal structure and lattice constants were determined by X-ray diffractometer (XRD). The preferred crystallographic orientation of martensite was determined using the four-circle XRD. SEM/EBSD was employed to verify the crystal structure of the martensite and to reveal its crystallographic features correlated with the microstructure. According to the XRD patterns, the crystal structure of NM and 7M was determined as tetragonal and monoclinic crystal structure, respectively. Pole figures measured by four-circle diffractometer revealed that the NM martensite possesses (004)NM and (220)NM preferred plane texture close to the substrate surface, whereas the 7M martensite has (2 0 20)7M, (2 0 )7M and (040)7M preferred plane texture close to the substrate surface. SEM/EBSD analysis shows that the surface layer of the film is mainly composed of NM martensite that is organized in variant groups. In each variant group, all the martensite plates consist of paired lamellar (112)NM compound twins and there are eight orientation variants in each variant group.
APA, Harvard, Vancouver, ISO, and other styles
17

Krupa, M. M., Yu B. Skirta, I. V. Sharay, and I. V. Gerasimchuk. "Magnetic field sensors based on the foil of amorphous cobalt alloy and NiMnGa martensite single-crystals." Sensors and Actuators A: Physical 264 (September 2017): 165–71. http://dx.doi.org/10.1016/j.sna.2017.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kabani, R., M. Terada, A. Roshko, and J. S. Moodera. "Magnetic properties of NiMnSb films." Journal of Applied Physics 67, no. 9 (May 1990): 4898–900. http://dx.doi.org/10.1063/1.344724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Van Roy, W., J. De Boeck, B. Brijs, and G. Borghs. "Epitaxial NiMnSb films on GaAs(001)." Applied Physics Letters 77, no. 25 (December 18, 2000): 4190–92. http://dx.doi.org/10.1063/1.1334356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wen, Zhenchao, Zhiyong Qiu, Sebastian Tölle, Cosimo Gorini, Takeshi Seki, Dazhi Hou, Takahide Kubota, Ulrich Eckern, Eiji Saitoh, and Koki Takanashi. "Spin-charge conversion in NiMnSb Heusler alloy films." Science Advances 5, no. 12 (December 2019): eaaw9337. http://dx.doi.org/10.1126/sciadv.aaw9337.

Full text
Abstract:
Half-metallic Heusler alloys are attracting considerable attention because of their unique half-metallic band structures, which exhibit high spin polarization and yield huge magnetoresistance ratios. Besides serving as ferromagnetic electrodes, Heusler alloys also have the potential to host spin-charge conversion. Here, we report on the spin-charge conversion effect in the prototypical Heusler alloy NiMnSb. An unusual charge signal was observed with a sign change at low temperature, which can be manipulated by film thickness and ordering structure. It is found that the spin-charge conversion has two contributions. First, the interfacial contribution causes a negative voltage signal, which is almost constant versus temperature. The second contribution is temperature dependent because it is dominated by minority states due to thermally excited magnons in the bulk part of the film. This work provides a pathway for the manipulation of spin-charge conversion in ferromagnetic metals by interface-bulk engineering for spintronic devices.
APA, Harvard, Vancouver, ISO, and other styles
21

Vovk, Andriy, Minghui Yu, Leszek Malkinski, Charles O’Connor, Zhenjun Wang, Eden Durant, Jinke Tang, and Vladimir Golub. "Magnetic and transport properties of NiMnAl thin films." Journal of Applied Physics 99, no. 8 (April 15, 2006): 08R503. http://dx.doi.org/10.1063/1.2166609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Caballero, J. A., W. J. Geerts, J. R. Childress, F. Petroff, P. Galtier, J. U. Thiele, and D. Weller. "Magneto-optical properties of sputter-deposited NiMnSb thin films." Applied Physics Letters 71, no. 16 (October 20, 1997): 2382–84. http://dx.doi.org/10.1063/1.120035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Öner, Y., C. S. Lue, Joseph H. Ross, K. D. D. Rathnayaka, and D. G. Naugle. "Thermomagnetic hysteresis effects in NiMn and NiMnPd thin films." Journal of Applied Physics 89, no. 11 (June 2001): 7044–46. http://dx.doi.org/10.1063/1.1362650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Branford, W. R., S. B. Roy, S. K. Clowes, Y. Miyoshi, Y. V. Bugoslavsky, S. Gardelis, J. Giapintzakis, and L. F. Cohen. "Spin polarisation and anomalous Hall effect in NiMnSb films." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): E1399—E1401. http://dx.doi.org/10.1016/j.jmmm.2003.12.913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Caballero, J. A., W. J. Geerts, F. Petroff, J. U. Thiele, D. Weller, and J. R. Childress. "Magnetic and magneto-optical properties of NiMnSb thin films." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 1229–30. http://dx.doi.org/10.1016/s0304-8853(97)00627-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ristoiu, D., J. P. Nozières, and L. Ranno. "Epitaxial NiMnSb thin films prepared by facing targets sputtering." Journal of Magnetism and Magnetic Materials 219, no. 1 (August 2000): 97–103. http://dx.doi.org/10.1016/s0304-8853(00)00003-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Borca, C. N., Takashi Komesu, Hae-kyung Jeong, P. A. Dowben, D. Ristoiu, Ch Hordequin, J. Pierre, and J. P. Nozières. "Effective surface Debye temperature for NiMnSb(100) epitaxial films." Applied Physics Letters 77, no. 1 (July 3, 2000): 88–90. http://dx.doi.org/10.1063/1.126886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, Hai Bo, Li Ma, and Wei Cai. "Effect of Annealing Conditions on Microstructure Evolution of NiMnFeGa Shape Memory Thin Film." Advanced Materials Research 150-151 (October 2010): 1745–49. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.1745.

Full text
Abstract:
The microstructure evolution of sputtered polycrystalline Ni54.75Mn13.25Fe7Ga25 ferromagnetic shape memory thin film annealed under different conditions is studied. Microstructure of different annealed films was studied using Transmission Electron Microscope (TEM) and corresponding selected area electron diffraction (SAED) patterns. The result shows that in the microstructure of as-deposited Ni54.75Mn13.25Fe7Ga25 free-standing film, after annealed at 1073 K for different time, the crystalline grain grows up with the increase of the annealing time. By analysis of the SAED patterns, the structure of the thin films change from face-centered cubic austenite to orthorhombic structure martensite compared between the film annealed at 1073 K for 10 mins, 1hr, 4 hrs, and 24 hrs respectively. It indicated that the heat treatment is an effective method of crystallizing behavior for the thin film.
APA, Harvard, Vancouver, ISO, and other styles
29

Srivastava, Vijay Kumar, Saurabh Srivastava, and Ratnamala Chatterjee. "Structural and Magnetic Properties of Off-Stochiometric Ni-Mn-Al Heusler Alloy Thin Film." Solid State Phenomena 136 (February 2008): 139–44. http://dx.doi.org/10.4028/www.scientific.net/ssp.136.139.

Full text
Abstract:
The initials results on growth and structural properties of Ni-Mn-Al full Heusler alloy thin films on silicon substrates deposited by RF magnetron sputtering is reported in this paper. Good crystallinity in the film is obtained by optimizing the sputtering parameters. The as-deposited film was post-annealed in vacuum in the temperature range between 150 °C, 250 °C and 450 °C for 60 min. It is observed that as deposited film shows nanocrystalline in nature. The film annealed at 450 °C shows L21 structure. The magnetic properties of the NiMnAl films at room temperature are measured by vibrating sample magnetometer [VSM]. It is found that the annealed samples shows clear saturating loop whereas the as prepared film is paramagnetic in nature.
APA, Harvard, Vancouver, ISO, and other styles
30

ÖNER, Y., M. ÖZDEMİR, B. AKTAŞ, and E. A. HARRIS. "Spin-Wave Resonance in Amorphous NiMn and NiMnPt Alloy Films." Turkish Journal of Physics 20, no. 1 (January 1, 1996): 96. http://dx.doi.org/10.55730/1300-0101.2681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Borca, C. N., D. Ristoiu, H.-K. Jeong, Takashi Komesu, A. N. Caruso, J. Pierre, L. Ranno, J. P. Nozières, and P. A. Dowben. "Epitaxial growth and surface properties of half-metal NiMnSb films." Journal of Physics: Condensed Matter 19, no. 31 (July 4, 2007): 315211. http://dx.doi.org/10.1088/0953-8984/19/31/315211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Giapintzakis, J., C. Grigorescu, A. Klini, A. Manousaki, V. Zorba, J. Androulakis, Z. Viskadourakis, and C. Fotakis. "Pulsed-laser deposition of NiMnSb thin films at moderate temperatures." Applied Surface Science 197-198 (September 2002): 421–25. http://dx.doi.org/10.1016/s0169-4332(02)00353-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schlomka, J. P., W. Press, M. R. Fitzsimmons, M. Lütt, and I. Grigorov. "Structural and magnetic properties of ion beam sputtered NiMnSb films." Physica B: Condensed Matter 248, no. 1-4 (June 1998): 140–45. http://dx.doi.org/10.1016/s0921-4526(98)00221-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Branford, W. R., S. K. Clowes, M. H. Syed, Y. V. Bugoslavsky, S. Gardelis, J. Androulakis, J. Giapintzakis, et al. "Large positive magnetoresistance in nonstoichiometric NiMnSb thin films on silicon." Applied Physics Letters 84, no. 13 (March 29, 2004): 2358–60. http://dx.doi.org/10.1063/1.1691172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hong, J., J. A. Caballero, W. Geerts, J. R. Childress, and S. J. Pearton. "Dry and Wet Etch Processes for NiMnSb Heusler Alloy Thin Films." Journal of The Electrochemical Society 144, no. 10 (October 1, 1997): 3602–8. http://dx.doi.org/10.1149/1.1838055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Giapintzakis, J., C. Grigorescu, A. Klini, A. Manousaki, V. Zorba, J. Androulakis, Z. Viskadourakis, and C. Fotakis. "Low-temperature growth of NiMnSb thin films by pulsed-laser deposition." Applied Physics Letters 80, no. 15 (April 15, 2002): 2716–18. http://dx.doi.org/10.1063/1.1469211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Caballero, J. A., Y. D. Park, A. Cabbibo, J. R. Childress, F. Petroff, and R. Morel. "Deposition of high-quality NiMnSb magnetic thin films at moderate temperatures." Journal of Applied Physics 81, no. 6 (March 15, 1997): 2740–44. http://dx.doi.org/10.1063/1.363977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ma, Jia-Lin, Hai-Long Wang, Xing-Min Zhang, Shuai Yan, Wen-Sheng Yan, and Jian-Hua Zhao. "Epitaxial Growth and Magnetic Properties of NiMnAs Films on GaAs Substrates." Chinese Physics Letters 36, no. 1 (January 2019): 017501. http://dx.doi.org/10.1088/0256-307x/36/1/017501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Takanashi, K\=oki, Hiroyasu Fujimori, Masuhiro Shoji, and Aisaku Nagai. "Preparation and Magneto-Optical Kerr Effect of PtMnSb/NiMnSb Multilayer Films." Japanese Journal of Applied Physics 26, Part 2, No. 8 (August 20, 1987): L1317—L1319. http://dx.doi.org/10.1143/jjap.26.l1317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Heinrich, B., G. Woltersdorf, R. Urban, O. Mosendz, G. Schmidt, P. Bach, L. Molenkamp, and E. Rozenberg. "Magnetic properties of NiMnSb(001) films grown on InGaAs/InP(001)." Journal of Applied Physics 95, no. 11 (June 2004): 7462–64. http://dx.doi.org/10.1063/1.1687274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bhandary, Nimai, Aadesh P. Singh, Pravin P. Ingole, and Suddhasatwa Basu. "Enhanced photoelectrochemical performance of electrodeposited hematite films decorated with nanostructured NiMnOx." RSC Advances 6, no. 42 (2016): 35239–47. http://dx.doi.org/10.1039/c6ra03984g.

Full text
Abstract:
In the present work, we report a novel nickel-manganese oxide (NiMnOx) decorated hematite (α-Fe2O3) photoanode for efficient water splitting in a photoelectrochemical (PEC) cell.
APA, Harvard, Vancouver, ISO, and other styles
42

Ristoiu, D., J. P. Nozières, C. N. Borca, T. Komesu, H. k. Jeong, and P. A. Dowben. "The surface composition and spin polarization of NiMnSb epitaxial thin films." Europhysics Letters (EPL) 49, no. 5 (March 1, 2000): 624–30. http://dx.doi.org/10.1209/epl/i2000-00196-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Apostolov, A. T., I. N. Apostolova, and J. M. Wesselinowa. "The magnetoelectric effect in thin films of ferromagnetic semiconductor La2 NiMnO6." physica status solidi (b) 251, no. 6 (April 19, 2014): 1219–24. http://dx.doi.org/10.1002/pssb.201350307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kirthika, P., and N. Thangaraj. "Modulating the hardness and magnetic property of NiMnWP by an organosulphur additive for magnetic storage applications." Digest Journal of Nanomaterials and Biostructures 16, no. 3 (July 2021): 855–62. http://dx.doi.org/10.15251/djnb.2021.163.855.

Full text
Abstract:
In this present investigation, we subjected a user friendly electrodeposition method to develop an NiMnWP thin film for magnetic storage devices .The key point of the research work is to enrich the mechanical and magnetic property by varying the deposition time, bath temperature and adding an organic additive. The NiMnWP magnetic thin film without and with thiourea of 2gm/l is developed and their characteristics were studied. The XRD peak confirms the presence of NiWP with an End centered monoclinic structure with the plane (820),(622) and manganese with (422) cubic plane. The crystallite size varies from 18.58 to 16.84 nm without thiourea and 19.83 to 12.33nm with thiourea. The hardness is found to be enhanced due to the addition of thiourea from 102 to 128, where as the other from 91.4 to 101.8.There is an considerable amount of enhancement in magnetization from 4.53 to 22.304x10-3 emu and retentivity from 1.2500 to 6.34x10-3 emu due to the addition of thiourea. From our experimental work analysis a better magnetic thin films were obtained, to be used in MEMS and magnetic storage devices.
APA, Harvard, Vancouver, ISO, and other styles
45

Caminat, P., E. Valerio, M. Autric, C. Grigorescu, and O. Monnereau. "Double beam pulse laser deposition of NiMnSb thin films at ambient temperature." Thin Solid Films 453-454 (April 2004): 269–72. http://dx.doi.org/10.1016/j.tsf.2003.11.146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Van Roy, W., M. Wójcik, E. Je̢dryka, S. Nadolski, D. Jalabert, B. Brijs, G. Borghs, and J. De Boeck. "Very low chemical disorder in epitaxial NiMnSb films on GaAs(111)B." Applied Physics Letters 83, no. 20 (November 17, 2003): 4214–16. http://dx.doi.org/10.1063/1.1627938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gardelis, S., J. Androulakis, O. Monnereau, P. D. Buckle, and J. Giapintzakis. "Possible use of the half-Hausler alloy NiMnSb in spintronics: synthesis and physical properties of arc melted NiMnSb and of NiMnSb thin films grown on InSb by pulsed laser deposition." Journal of Physics: Conference Series 10 (January 1, 2005): 167–70. http://dx.doi.org/10.1088/1742-6596/10/1/041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Anh Tuan, Nguyen, and Nguyen Phuc Duong. "Structural, magnetic, and magnetotransport properties of NiMnSb thin films deposited by flash evaporation." Applied Physics Letters 99, no. 16 (October 17, 2011): 162507. http://dx.doi.org/10.1063/1.3651337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mancoff, F. B., B. M. Clemens, E. J. Singley, and D. N. Basov. "Infrared probe of the electronic structure and carrier scattering in NiMnSb thin films." Physical Review B 60, no. 18 (November 1, 1999): R12565—R12568. http://dx.doi.org/10.1103/physrevb.60.r12565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wojcik, M., W. Van Roy, E. Jedryka, S. Nadolski, G. Borghs, and J. De Boeck. "NMR evidence for MnSb environments within epitaxial NiMnSb films grown on GaAs(001)." Journal of Magnetism and Magnetic Materials 240, no. 1-3 (February 2002): 414–16. http://dx.doi.org/10.1016/s0304-8853(01)00877-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography