Academic literature on the topic 'Nilpotente'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nilpotente.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nilpotente"
Chaudouard, Pierre-Henri, and Gérard Laumon. "SUR LE COMPTAGE DES FIBRÉS DE HITCHIN NILPOTENTS." Journal of the Institute of Mathematics of Jussieu 15, no. 1 (August 7, 2014): 91–164. http://dx.doi.org/10.1017/s1474748014000292.
Full textDettmann, Beate. "Schwach Nilpotente Gruppen." Results in Mathematics 19, no. 1-2 (March 1991): 54–56. http://dx.doi.org/10.1007/bf03322415.
Full textVon Walcher, S. "Über homogene nilpotente Polynome." Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 56, no. 1 (December 1986): 153–55. http://dx.doi.org/10.1007/bf02941513.
Full textFidelis, Marcello, and José Roger de Oliveira Gomes. "Uma abordagem elementar para uma descrição do subgrupo de Fitting e do radical solúvel de um grupo finito G." REMAT: Revista Eletrônica da Matemática 7, no. 2 (December 15, 2021): e3005. http://dx.doi.org/10.35819/remat2021v7i2id5193.
Full textTani, Gabriella Corsi. "p-gruppi finiti con automorfo nilpotente." Rendiconti del Seminario Matematico e Fisico di Milano 58, no. 1 (December 1988): 55–66. http://dx.doi.org/10.1007/bf02925230.
Full textMichel, Horst. "Nilpotente Endomorphismen von freien abelschen Gruppen." Publicationes Mathematicae Debrecen 18, no. 1-4 (July 1, 2022): 261–72. http://dx.doi.org/10.5486/pmd.1971.18.1-4.29.
Full textVon Jantzen, J. C. "Kohomologie vonp-Lie-Algebren und nilpotente Elemente." Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 56, no. 1 (December 1986): 191–219. http://dx.doi.org/10.1007/bf02941516.
Full textFélix, Yves, and Jean-Claude Thomas. "Le tor differentiel d'une fibration non nilpotente." Journal of Pure and Applied Algebra 38, no. 2-3 (November 1985): 217–33. http://dx.doi.org/10.1016/0022-4049(85)90010-6.
Full textGolasiński, Marek. "On homotopy nilpotency." Glasnik Matematicki 56, no. 2 (December 23, 2021): 391–406. http://dx.doi.org/10.3336/gm.56.2.10.
Full textFanaï, Hamid-Reza. "Sur un type particulier de valeur propre des solvariétés d'Einstein." Bulletin of the Australian Mathematical Society 68, no. 1 (August 2003): 39–43. http://dx.doi.org/10.1017/s0004972700037394.
Full textDissertations / Theses on the topic "Nilpotente"
Ribnere, Evija. "Engelbedingungen für nilpotente und auflösbare Gruppen." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=983427631.
Full textPeters, Christoph. "Blätterungen von Nilmannigfaltigkeiten." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967209927.
Full textGomez, John Hermes Castillo. "Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04012013-170011/.
Full textLet $F$ be a field of characteristic different from $2$ and $G$ a group. From the classical involution, which sends each element in its inverse and an orientation of $G$, it is possible to define an oriented classical involution on the group algebra $FG$. The goal of this thesis is to study Lie properties of the set of symmetric elements $(FG)^+$ and, in some cases, of the set of skew-symmetric elements $(FG)^-$. We first deal with the case when $G$ does not have elements of order $2$. In this situation, we show that if $(FG)^+$ (or $(FG)^-$) is Lie nilpotent or Lie $n$-Engel, then the whole group algebra $FG$ satisfies the same property. Later we consider the case when $G$ contains a copy of the quaternion group of order $8$. In this instance, we give a complete description of the group algebras such that $(FG)^+$ is strongly Lie nilpotent, Lie nilpotent and Lie $n$-Engel. As a consequence, we get that the set of symmetric units of this kind of groups is nilpotent. Furthermore, we study the case when $G$ does not contain a copy of the quaternion group of order $8$. Here, we present an example that shows that the previews results obtained in former works, with the classical involution, may not hold with an oriented classical involution. However, we give some kinds of groups for which those results are achieved. Finally, we study the Lie nilpotency index of $(FG)^+$. It is given a necessary and sufficient condition to the Lie nilpotency index of $(FG)^+$ and the nilpotency class of the symmetric units to be maximal, in a Lie nilpotent group algebra. In addition, we consider the situation when $G$ contains a copy of the quaternion group of order $8$.
Jöllenbeck, Michael. "Algebraic discrete Morse theory and applications to commutative algebra (Algebraische diskrete Morse-Theorie und Anwendungen in der kommutativen Algebra) /." [S.l. : s.n.], 2005. http://archiv.ub.uni-marburg.de/diss/z2005/0108/.
Full textSilva, Andre Ricardo Belotto da. "Análise das bifurcações de um sistema de dinâmica de populações." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-18082010-122313/.
Full textIn this work are studied the bifurcations of a bi-dimensional predator-prey model, which extends and improves the Volterra-Lotka system. This model has five parameters and a non-monotonic response function of Holling IV type: $$ \\left\\{\\begin \\dot=x(1-\\lambda x-\\frac{\\alpha x^2+\\beta x +1})\\\\ \\dot=y(-\\delta-\\mu y+\\frac{\\alpha x^2+\\beta x +1}) \\end ight. $$ They studied the sadle-node, Hopf, transcritic, Bogdanov-Takens and degenerate Bogdanov-Takens bifurcations. The method of organising centers is used to study the qualitative behavior of the bifurcation diagram.
ZAHID, ABOUBEKRE. "Les endomorphismes k - finis des modules de whittaker. Orbite nilpotente minimale en type g2 et operateurs differentiels." Paris 6, 1990. http://www.theses.fr/1990PA066722.
Full textTerpereau, Ronan. "Schémas de Hilbert invariants et théorie classique des invariants." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00748952.
Full textSantos, Edson Carlos Licurgo. "Estruturas complexas comauto-espaços nilpotentes e soluveis." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305823.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-10T11:48:47Z (GMT). No. of bitstreams: 1 Santos_EdsonCarlosLicurgo_D.pdf: 405695 bytes, checksum: 334d5172d85f7bc35539dbd900fbef67 (MD5) Previous issue date: 2007
Resumo: Seja (g; [·,·]) uma álgebra de Lie com uma estrutura complexa integrável J. Os ± i-auto-espaços de J são subálgebras complexas de gC isomorfas a álgebra (g; [*]J ) com colchete [X * Y ]J = ½ ([X, Y ] - [JX, JY ]). Consideramos, no capítulo 2, o caso onde estas subálgebras são nilpotentes e mostramos que a álgebra de Lie original (g, [·,·]) é solúvel. Consideramos também o caso 6-dimensional e determinamos explicitamente a única álgebra de Lie possível (g; [*]J ). Finalizamos esse capítulo pruduzindo vários exemplos ilustrando diferentes situações, em particular mostramos que para cada s existe g com estrutura complexa J tal que (g; [*]J ) é s-passos nilpotente. Exemplos similares para estruturas hipercomplexas são também construidos. No capítulo 3 consideramos o caso onde os ±i-auto-espaços de J são subálgebras complexas solúveis e a álgebra complexa é uma álgebra de Lie semi-simples. Mostramos que, se a álgebra real é compacta, uma tal estrutura complexa depende unicamente de um subespaço da subálgebra de Cartan. Finalizamos esse capítulo considerando o caso em que as subálgebras solúveis complexas estão contidas em subálgebras de Borel de uma órbita aberta da ação dos automorfismos internos da álgebra real. Mostramos que, assim como no caso compacto, as estruturas complexas são determinandas, de modo único, por subespaços da subálgebra de Cartan. Ao final da tese apresentamos um procedimento, elaborado em MAPLE, que possibilita testar a identidade de Jacobi quando os colchetes de Lie são dados pelas constantes de estrutura
Abstract: Let (g; [·,·]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g; [*]J )with bracket [X * Y ]J = ½ ([X, Y ] - [JX, JY ]). We consider, in chapter three, thecase where these subalgebras are nilpotent and prove that the original Lie algebra(g, [·,·]) must be solvable. We consider also the 6-dimensional case and determineexplicitly the possible nilpotent Lie algebras (g; [*]J ). We finish this chapter byproducing several examples illustrating different situations, in particular we showthat for each given s there exists g with complex structure J such that (g; [*]J ) iss-step nilpotent. Similar examples of hypercomplex structures are also built.In Chapter 3 we consider the case where the ± i eigenspaces of J are solvablecomplex subalgebras and gC is a semisimple Lie algebra. We prove that, if g is compact, such a complex structure comes from a subspace of the Cartan subalgebra.We finish this chapter by considering the case where the solvable complex subalgebras are contained in Borel subalgebras of an open orbit of the action of inner automorphisms of the real algebra.At the end of the thesis we present an algorithm, made in MAPLE, that allowus to verify the Jacobi identity when the Lie brackets are defined by the structureconstants
Doutorado
Mestre em Matemática
MELO, Emerson Ferreira de. "Sobre Anéis de Lie Admitindo Automorfismos de Ordens Finitas e Álgebras de Lie Quase Nilpotentes." Universidade Federal de Goiás, 2011. http://repositorio.bc.ufg.br/tede/handle/tde/1938.
Full textIn this work we present a study on Lie rings and algebras admitting an automorphism of finite order. We emphasize questions on nilpotency. We prove important results of this theory, for example the Higman, Kreknin and Kostrikin s Theorem. Furthermore, let L be a finite dimensional Lie algebra over an algebraically closed field of characteristic 0. Suppose that L admits a nilpotent Lie algebra D with n weights in L, and let m be the dimension of the Fitting null component with respect to D. Then L is almost nilpotent, namely, L contains a nilpotent subalgebra N of {m,n}-bounded codimension and of nbounded nilpotency class. If m = 0, then L is nilpotent of bounded class by a function of n. This theorem was published by E. I. Khukhro and P. Shumyatsky in the paper entitled Lie Algebras with Almost Constant-Free Derivations .
Nesta dissertação apresentamos um estudo sobre anéis e álgebras de Lie admitindo um automorfismo de ordem finita, com ênfase em questões sobre nilpotência. Demonstramos resultados importantes desta teoria, como por exemplo o Teorema de Higman, Kreknin e Kostrikin. Além disso, considere L uma álgebra de Lie de dimensão finita sobre um corpo algebricamente fechado de característica 0. Suponha que L admita uma álgebra de derivações nilpotente D com n pesos em L, e seja m a dimensão da componente nula de Fitting com respeito a D. Então L é quase nilpotente, ou seja, L contém uma subálgebra N de codimensão {m,n}-limitada e classe de nilpotência n-limitada. Se m = 0, então L é nilpotente de classe limitada por uma função de n. Este teorema foi publicado por E. I. Khukhro e P. Shumyatsky num artigo intitulado Lie Algebras with almost constant-free derivations .
Rodrigues, Claudenir Freire. "Grupos abelianos-por-nilpotentes do tipo homologico 'FP IND.3'." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306915.
Full textTese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-07T18:15:42Z (GMT). No. of bitstreams: 1 Rodrigues_ClaudenirFreire_D.pdf: 1150293 bytes, checksum: 63045fd15f6ef421699cbcf26de55d92 (MD5) Previous issue date: 2006
Resumo: Neste trabalho estudamos grupos abstratos finitamente gerados G que são extensões cindidas de um grupo abeliano A por um grupo Q nilpotente de classe 2. Mostramos que se G tem tipo homológico F P3, então o quociente G/N também tem tipo homológico F P3 onde N é o fecho normal do centro de Q em G. Observamos que não existe classificação quando G pode ter tipo FP3, nem classificação para tipo F P2 ou ser finitamente apresentável. Por causa disso nós trabalhamos com um quociente especifico de G. Ainda fica em aberto se cada quociente de G tem tipo FP3 quando G tem tipo FP3. Observamos que isso vale quando G é grupo metabeliano, nesse caso a teoria de Bieri-Strebel pode ser aplicada
Abstract: We study abstract finitely generated groups G that are split extensions from A abelian group by Q nilpotent group of class two. We show that if G has homological type FP3 then the quotient group GjN has homological type FP3 too, where N is the normal closure of the center of Q in G. Since there is no classification when G is of type FP3, nor when G is of type FP2 or finitely presented we work with one specific quotient. It is an open problem whether every quotient of G has type F P3. This holds if G is a metabelian group and in this case the Bieri-Strebel theory applies
Doutorado
Doutor em Matemática
Books on the topic "Nilpotente"
Goze, Michel, and Yusupdjan Khakimdjanov. Nilpotent Lie Algebras. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2432-6.
Full textFischer, Veronique, and Michael Ruzhansky. Quantization on Nilpotent Lie Groups. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29558-9.
Full textClement, Anthony E., Stephen Majewicz, and Marcos Zyman. The Theory of Nilpotent Groups. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66213-8.
Full textKhukhro, Evgenii I. Nilpotent groups and their automorphisms. Berlin: W. de Gruyter, 1993.
Find full textFreudenburg, Gene. Algebraic Theory of Locally Nilpotent Derivations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55350-3.
Full text1959-, McGovern William M., ed. Nilpotent orbits in semisimple Lie algebras. New York: Van Nostrand Reinhold, 1993.
Find full textSmith, Jeremy Francis. Topics in products of nilpotent groups. [s.l.]: typescript, 1998.
Find full textRavenel, Douglas C. Nilpotence and periodicity in stable homotopy theory. Princeton, N.J: Princeton University Press, 1992.
Find full textBorho, W., J.-L. Brylinski, and R. MacPherson. Nilpotent Orbits, Primitive Ideals, and Characteristic Classes. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4612-4558-2.
Full textBook chapters on the topic "Nilpotente"
Kühnel, Wolfgang. "Abelsche und nilpotente Lie-Gruppen." In Matrizen und Lie-Gruppen, 163–70. Wiesbaden: Vieweg+Teubner, 2011. http://dx.doi.org/10.1007/978-3-8348-9905-7_15.
Full textSatake, Ichiro, Genjiro Fujisaki, Kazuya Kato, Masato Kurihara, and Shoichi Nakajima. "Über nilpotente topologische Gruppen I." In Kenkichi Iwasawa Collected Papers, 118–31. Tokyo: Springer Japan, 2001. http://dx.doi.org/10.1007/978-4-431-67947-9_12.
Full textKurzweil, Hans, and Bernd Stellmacher. "p-Gruppen und nilpotente Gruppen." In Springer-Lehrbuch, 91–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58816-7_5.
Full textSchwartz, Lionel. "La filtration nilpotente de la categorie μ et la cohomologie des espaces de lacets." In Lecture Notes in Mathematics, 208–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0077804.
Full textAoyama, Hideaki, Anatoli Konechny, V. Lemes, N. Maggiore, M. Sarandy, S. Sorella, Steven Duplij, et al. "Nilpotent Mapping." In Concise Encyclopedia of Supersymmetry, 264. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_347.
Full textStix, Jakob. "Nilpotent Sections." In Lecture Notes in Mathematics, 175–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30674-7_14.
Full textGanyushkin, Olexandr, and Volodymyr Mazorchuk. "Nilpotent Subsemigroups." In Algebra and Applications, 131–52. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84800-281-4_8.
Full textCeccherini-Silberstein, Tullio, and Michele D’Adderio. "Nilpotent Groups." In Springer Monographs in Mathematics, 23–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88109-2_2.
Full textRose, H. E. "Nilpotency." In Universitext, 209–27. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-889-6_10.
Full textGoze, Michel, and Yusupdjan Khakimdjanov. "Lie Algebras. Generalities." In Nilpotent Lie Algebras, 1–39. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2432-6_1.
Full textConference papers on the topic "Nilpotente"
Irschik, Hans, Alexander K. Belyaev, Michael Krommer, and Kurt Schlacher. "Non-Uniqueness of Two Inverse Problems of Thermally and Force-Loaded Smart Structures: Sensor Shaping and Actuator Shaping Problem." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0715.
Full textYang, Wen-Wei, Chia-Cheng Liu, Ching-Feng Wen, and Yung-Yih Lur. "On Simultaneously Nilpotent Fuzzy Matrices over Max-nilpotent Operations." In 2012 Fifth International Joint Conference on Computational Sciences and Optimization (CSO). IEEE, 2012. http://dx.doi.org/10.1109/cso.2012.55.
Full textRowlands, Peter. "Idempotent or nilpotent?" In ICNPAA 2018 WORLD CONGRESS: 12th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences. Author(s), 2018. http://dx.doi.org/10.1063/1.5081601.
Full textLi, Zhengxing, Jinke Hai, and Xiuyun Guo. "Some results on C-automorphisms of finite nilpotent by nilpotent groups." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002617.
Full textMandilara, Aikaterini, and Vladimir M. Akulin. "Entanglement via nilpotent polynomials." In Proceedings of the 46th Karpacz Winter School of Theoretical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814317443_0009.
Full textMbekhta, Mostafa, and Jaroslav Zemánek. "Quasi-nilpotent and compact." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-20.
Full textCodara, Pietro, and Diego Valota. "Valuations in Nilpotent Minimum Logic." In 2015 IEEE International Symposium on Multiple-Valued Logic (ISMVL). IEEE, 2015. http://dx.doi.org/10.1109/ismvl.2015.19.
Full textGerla, Brunella, and Massimo Dalla Rovere. "Nilpotent Minimum Fuzzy Description Logics." In 7th conference of the European Society for Fuzzy Logic and Technology. Paris, France: Atlantis Press, 2011. http://dx.doi.org/10.2991/eusflat.2011.127.
Full textHermes, Henry. "Nilpotent approximations of control systems." In 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268588.
Full textROWLANDS, PETER, and SYDNEY ROWLANDS. "Representations of the Nilpotent Dirac Matrices." In Unified Field Mechanics II: Preliminary Formulations and Empirical Tests, 10th International Symposium Honouring Mathematical Physicist Jean-Pierre Vigier. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813232044_0002.
Full textReports on the topic "Nilpotente"
Rockland, C. Intrinsic Nilpotent Approximation. Fort Belvoir, VA: Defense Technical Information Center, June 1985. http://dx.doi.org/10.21236/ada158265.
Full textIkawa, Osamu. Motion of Charged Particles in Two-Step Nilpotent Lie Groups. GIQ, 2012. http://dx.doi.org/10.7546/giq-12-2011-252-262.
Full textIkawa, Osamu. Motion of Charged Particles in Two-Step Nilpotent Lie Groups. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-20-2010-57-67.
Full text