Academic literature on the topic 'Nijenhuis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nijenhuis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nijenhuis"
Gozzi, E., and D. Mauro. "A new look at the Schouten–Nijenhuis, Frölicher–Nijenhuis, and Nijenhuis–Richardson brackets." Journal of Mathematical Physics 41, no. 4 (April 2000): 1916–33. http://dx.doi.org/10.1063/1.533218.
Full textLeroux, Philippe. "Construction of Nijenhuis operators and dendriform trialgebras." International Journal of Mathematics and Mathematical Sciences 2004, no. 49 (2004): 2595–615. http://dx.doi.org/10.1155/s0161171204402117.
Full textBolsinov, Alexey V., Andrey Yu Konyaev, and Vladimir S. Matveev. "Nijenhuis geometry." Advances in Mathematics 394 (January 2022): 108001. http://dx.doi.org/10.1016/j.aim.2021.108001.
Full textLiu, Jiefeng, Sihan Zhou, and Lamei Yuan. "Conformal r-matrix-Nijenhuis structures, symplectic-Nijenhuis structures, and ON-structures." Journal of Mathematical Physics 63, no. 10 (October 1, 2022): 101701. http://dx.doi.org/10.1063/5.0101471.
Full textCORDEIRO, FLÁVIO, and JOANA M. NUNES DA COSTA. "REDUCTION AND CONSTRUCTION OF POISSON QUASI-NIJENHUIS MANIFOLDS WITH BACKGROUND." International Journal of Geometric Methods in Modern Physics 07, no. 04 (June 2010): 539–64. http://dx.doi.org/10.1142/s0219887810004439.
Full textWang, Qi, Jiefeng Liu, and Yunhe Sheng. "Koszul–Vinberg structures and compatible structures on left-symmetric algebroids." International Journal of Geometric Methods in Modern Physics 17, no. 13 (October 13, 2020): 2050199. http://dx.doi.org/10.1142/s0219887820501996.
Full textWang, Qi, Yunhe Sheng, Chengming Bai, and Jiefeng Liu. "Nijenhuis operators on pre-Lie algebras." Communications in Contemporary Mathematics 21, no. 07 (October 10, 2019): 1850050. http://dx.doi.org/10.1142/s0219199718500505.
Full textDe Nicola, Antonio, Juan Carlos Marrero, and Edith Padrón. "Reduction of Poisson–Nijenhuis Lie algebroids to symplectic-Nijenhuis Lie algebroids with a nondegenerate Nijenhuis tensor." Journal of Physics A: Mathematical and Theoretical 44, no. 42 (October 4, 2011): 425206. http://dx.doi.org/10.1088/1751-8113/44/42/425206.
Full textNorris, L. K. "Schouten–Nijenhuis brackets." Journal of Mathematical Physics 38, no. 5 (May 1997): 2694–709. http://dx.doi.org/10.1063/1.531981.
Full textLongguang, He, and Liu Baokang. "Dirac-Nijenhuis manifolds." Reports on Mathematical Physics 53, no. 1 (February 2004): 123–42. http://dx.doi.org/10.1016/s0034-4877(04)90008-0.
Full textDissertations / Theses on the topic "Nijenhuis"
Strohmayer, Henrik. "Prop profiles of compatible Poisson and Nijenhuis structures." Doctoral thesis, Stockholm : Department of Mathematics, Stockholm University, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-27262.
Full textLavandier, Jean. "Role du tenseur de Nijenhuis dans l'intégralité de certaines g-structures." Toulouse 3, 1991. http://www.theses.fr/1991TOU30272.
Full textGérard, Maxime. "Méthodes de sélection de structures presque complexes dans le cadre symplectique." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0051/document.
Full textGiven a symplectic manifold $(M,\omega)$, there always exist almost complex $\omega,$-compatible positive structures. The problem studied in this thesis is to find methods to select some of these structures. Answers have already been suggested by V. Apostolov and T.Draghici, J. G. Evans, and J. Keller and M. Lejmi. We are mainly interested here in selection methods defined in terms of the Nijenhuis tensor. The problem of selecting geometric objects can be tackled in various ways. One of them is to decompose into irreducible components some tensors naturally associated with the structure, and to impose conditions on some of those components. We prove that the Nijenhuis tensor is irreducible under the action of the unitary group. This irreducibility does not allow to impose any linear condition on the Nijenhuis tensor, except the vanishing of it, which corresponds to Kähler manifolds. Another possible method of selection is to impose conditions on distributions related to the problem. We study distributions defined by the Nijenhuis tensor. Our results concern the possible dimensions and properties of involutivity of these distributions. We give examples which are invariant under the action of a group, on some symplectic groups and on twisted bundles over some Riemannian manifolds. The last method considered in this work consists in looking for extremals of functionals defined from the data. To construct the simplest functional defined in terms of the Nijenhuis tensor, we integrate a polynomial function of the second degree into the components of this tensor. All such polynomials are multiple of the square of the norm of this tensor. This functional is the one studied by Evans; the drawback for our selection problem is that there exist examples of compact symplectic manifolds which do not admit any K\"ahler structure but such that the infimum of the functional is zero
Wei, Xi [Verfasser], Gabriele [Gutachter] Diekert, Ivonne [Gutachter] Nijenhuis, and Ulrich [Gutachter] Szewzyk. "Characterization of the biochemistry and physiology of hydrocarbon degradation pathways by stable isotope approaches / Xi Wei ; Gutachter: Gabriele Diekert, Ivonne Nijenhuis, Ulrich Szewzyk." Jena : Friedrich-Schiller-Universität Jena, 2018. http://d-nb.info/1170588352/34.
Full textNijenhuis, Ivonne [Verfasser], R. Gary [Akademischer Betreuer] Sawers, G. [Akademischer Betreuer] Diekert, and Lollar B. [Akademischer Betreuer] Sherwood. "Characterisation of microbial transformation of halogenated organic contaminants using compound-specific stable isotope analysis / Ivonne Nijenhuis. Betreuer: R. Gary Sawers ; G. Diekert ; B. Sherwood Lollar." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2016. http://d-nb.info/109078662X/34.
Full textMarshall, David G. "Classification of integrable hydrodynamic chains using the Haantjes tensor." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/14547.
Full textRenpenning, Julian [Verfasser], Peter [Akademischer Betreuer] Neubauer, Ivonne [Akademischer Betreuer] Nijenhuis, Juri [Akademischer Betreuer] Rappsilber, Hans-Hermann [Akademischer Betreuer] Richnow, and Lorenz [Akademischer Betreuer] Adrian. "Characterization of microbial reductive dehalogenation using novel compound-specific stable isotope analyses / Julian Renpenning. Betreuer: Peter Neubauer ; Ivonne Nijenhuis. Gutachter: Peter Neubauer ; Juri Rappsilber ; Hans-Hermann Richnow ; Lorenz Adrian." Berlin : Technische Universität Berlin, 2015. http://d-nb.info/1078310467/34.
Full textŠramková, Kristína. "Frölicherova-Nijenhuisova závorka a její aplikace v geometrii a variačním počtu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-382475.
Full textAzimi, Mohammad Jawad. "Higher structures: gerbes and Nijenhuis forms." Doctoral thesis, 2013. http://hdl.handle.net/10316/23739.
Full textThe thesis is devoted to higher structures, which is a generic name for all those collections of $n$-ary brackets or products reducing for $n=2$ to the ordinary ones. Among examples of those are $2$-groups, and their related notions of principal bundles, i.e. non-Abelian gerbes, and $L_\infty$-structures. These two major examples are the central objects of the two chapters of the present work. In the first chapter, we give a precise and general description of gerbes valued in arbitrary crossed module and over an arbitrary differential stack. We do it using only Lie groupoids, hence ordinary differential geometry, by considering differential stacks as being Lie groupoids up to Morita equivalence. We prove the coincidence with the existing notions by comparing our construction with non-Abelian cohomology. More precisely, we introduce the key notion of extension of Lie groupoids valued in a crossed-module. We relate it with Dedecker's non-Abelian $1$-cocycles, and we then show that Morita equivalence amounts to co-boundaries, paving the way for a general definition of gerbes valued in a crossed-module over a differential stack. In the second chapter, we develop the theory of Nijenhuis forms on $L_\infty$-algebras. First, we recall a convenient notion of Richardson-Nijenhuis bracket on the graded symmetric vector valued forms on a graded vector space, bracket for which $L_{\infty}$-algebras are simply Poisson elements. Weak Nijenhuis vector valued forms for a given $L_{\infty}$-algebra are defined to be forms of degree $0$ deforming (i.e. taking bracket) that Poisson element into an other Poisson element. Nijenhuis forms are those forms ${\mathcal N}$ for which deforming twice by ${\mathcal N}$ is like deforming once by a form ${\mathcal K}$ called the square of ${\mathcal N }$. We obtain in this context an infinite hierarchy of $L_{\infty}$-algebras. Among examples of such Nijenhuis deformations are the Euler map on an arbitrary $L_{\infty}$-algebra or Poisson and Maurer Cartan elements on a differential graded Lie algebra. A classification of Nijenhuis forms on anchor-free Lie $2$-algebras can be completed. We also show that there is, under adequate conditions, a one to one correspondence between the Nijenhuis vector valued forms $\mathcal{N}$ with respect to the Lie $2$-algebra associated to a Courant algebroid and Nijenhuis $\mathcal{C}^{\infty}$-linear maps on the Courant algebroid itself. We give examples of Nijenhuis vector valued forms on the Lie $n$-algebras associated to $n$-plectic manifolds. We also explain how Nijenhuis tensors on a Lie algebroid are indeed Nijenhuis forms of some Gerstenhaber algebra, considered as an $L_\infty$-algebra. For the latter $L_{\infty}$-algebra structure, moreover, $\Omega N$-structures and Poisson-Nijenhuis structrures can also be seen as Nijenhuis forms.
Esta tese trata de estruturas de ordem superior, designação genérica para todas as coleções de parêntesis ou produtos n-uplos que, no caso de n = 2, se reduzem aos usuais. Exemplos destas estruturas incluem os 2-grupos e as noções com eles relacionadas de brados principais, isto é, gerbes não-Abelianos, e estruturas L1. Estes dois exemplos importantes são os objetos centrais dos dois capítulos desta dissertação. No primeiro capítulo, apresentamos uma descrição geral e precisa de gerbes com valores em módulos cruzados arbitrários e sobre stacks diferenciais arbitrários. Para esta descrição usamos grupóides de Lie, ou seja, apenas geometria diferencial clássica, considerando os stacks diferenciais como sendo grupóides de Lie, módulo equivalência de Morita. Provamos que a descrição apresentada conduz a uma noção que é equivalente às já existentes, comparando a nossa construção com a cohomologia não-Abeliana. Mais exatamente, introduzimos a noção chave de extensão de grupóide de Lie com valores num módulo cruzado, relacionamo-la com 1-cociclos não-Abelianos de Dedecker e provamos, em seguida, que a equivalência de Morita se traduz em cobordos, abrindo assim o caminho para uma de nição geral de gerbes com valores num módulo cruzado sobre um stack diferencial. No segundo capítulo, desenvolvemos a teoria de formas de Nijenhuis em álgebras L1. Começamos por apresentar uma de nição de parênteses de Richardson-Nijenhuis para formas simétricas graduadas a valores vetoriais, num espaço vetorial graduado. Para este parênteses, as estruturas L1 são simplesmente elementos de tipo Poisson. Dada uma álgebra L1, uma forma a valores vetoriais, de grau zero, que deforma um elemento de Poisson num outro elemento de Poisson, diz-se uma forma fraca de Nijenhuis. Aqui, a deformação consiste em tomar o parênteses da forma fraca de Nijenhuis com o elemento. As formas de Nijenhuis N são aquelas para as quais deformar duas vezes por N é o mesmo que deformar uma vez por uma forma K, que é dita o quadrado de N. Neste contexto, obtemos uma hierarquia in nita de álgebras L1. De entre os exemplos de deformações de Nijenhuis, contam-se a aplicação de Euler numa álgebra L1 arbitrária, bem como os elementos de Poisson e de Maurer Cartan numa álgebra de Lie diferencial graduada. Efetuamos a classi cação das formas de Nijenhuis em 2-álgebras de Lie com âncora nula. Mostramos também que, sobre certas condições, existe uma correspondência biunívoca entre as formas de Nijenhuis a valores vetoriais, na 2-álgebra de Lie associada a um algebr óide de Courant, e as aplicações de Nijenhuis C1-lineares no mesmo algebróide de Courant. Apresentamos exemplos de formas de Nijenhuis a valores vetoriais nas n-álgebras de Lie associadas a variedades n-pléticas. Explicamos também como tensores de Nijenhuis num algebróide de Lie podem ser vistos como formas de Nijenhuis numa certa álgebra de Gerstenhaber, considerada como álgebra L1. Além disso, para esta última estrutura de álgebra L1, estruturas N e estruturas de Poisson-Nijenhuis podem também ser vistas como formas de Nijenhuis.
Viviani, Emanuele. "Bihamiltonian structures on compact hermitian symmetric spaces." Doctoral thesis, 2022. http://hdl.handle.net/2158/1268162.
Full textBooks on the topic "Nijenhuis"
Stedelijk Museum de Lakenhal (Leiden), ed. Leidse ateliers: Peter Duivenvoorden, Herby Nijenhuis,Rob van't Zelfde. Leiden: Stedelijk Museum de Lakenhal, 1987.
Find full textWerkman, Hans. Spitten en [niet] moe worden: Leven en werk van Bé Nijenhuis 1914-1972. Kampen: Kok, 1995.
Find full text1978-, Storms Martijn, ed. De Nederlandse cartografie van Latijns Amerika: Kaarten uit de collectie Van Keulen en de collectie Bodel Nijenhuis = A cartografia neerlandesa da América Latina : mapas da coleção Van Keulen e da coleção Bodel Nijenhuis. Leiden: Universiteitsbibliotheek Leiden, 2008.
Find full textWillem, Nijenhuis, Jong, Christiaan G. F. de., and Sluis Jacob van 1953-, eds. Gericht verleden: Kerkhistorische opstellen aangeboden aan prof. dr. W. Nijenhuis ter gelegenheid van zijn vijfenzeventigste verjaardag = essays on church history dedicated to prof. dr. W. Nijenhuis on the occasion of his 75th birthday. Leiden: J.J. Groen, 1991.
Find full textBodel Nijenhuis, Johannes Tiberius, 1797-1872, Lem Anton van der, Ommen Kasper van, Schaeps J, and Rijksuniversiteit te Leiden Bibliotheek, eds. De verzamelingen van Bodel Nijenhuis: Kaarten portretten en boeken van een pionier in de historische cartografie. Leiden: Universiteitsbibliotheek Leiden, 2008.
Find full textde, Vries Dolf, Rijksuniversiteit te Leiden. Bibliotheek. Collectie Bodel Nijenhuis., and International Conference on the History of Cartography (13th : 1989 : Amsterdam, Netherlands), eds. Kaarten met geschiedenis, 1500-1800: Een selectie van oude getekende kaarten van Nederland vit de Collectie Bodel Nijenhuis. Utrecht: H&S, HES uitgevers, 1989.
Find full textBook chapters on the topic "Nijenhuis"
Aoyama, Hideaki, Anatoli Konechny, V. Lemes, N. Maggiore, M. Sarandy, S. Sorella, Steven Duplij, et al. "Nijenhuis Tensor." In Concise Encyclopedia of Supersymmetry, 264. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_346.
Full textVaisman, Izu. "A Lecture on Poisson—Nijenhuis Structures." In Integrable Systems and Foliations, 169–85. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-4134-8_10.
Full textMikami, Kentaro. "An Interpretation of the Schouten-Nijenhuis Bracket." In Noncommutative Differential Geometry and Its Applications to Physics, 131–43. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0704-7_8.
Full textVaisman, Izu. "The Poisson Bivector and the Schouten-Nijenhuis Bracket." In Lectures on the Geometry of Poisson Manifolds, 5–17. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8495-2_2.
Full textOuzilou, R. "Quelques remarques sur les variétés de Poisson-Nijenhuis." In Symplectic Geometry and Mathematical Physics, 355–65. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4757-2140-9_17.
Full textKawai, Kotaro, Hông Vân Lê, and Lorenz Schwachhöfer. "Frölicher–Nijenhuis Bracket on Manifolds with Special Holonomy." In Lectures and Surveys on G2-Manifolds and Related Topics, 201–15. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0577-6_8.
Full textMagri, F., and T. Marsico. "Poisson-Nijenhuis Manifolds, Classical Yang-Baxter Equations, and Frobenius Algebras." In Springer Proceedings in Physics, 275–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24748-5_15.
Full textde Jesús Cruz Guzmán, José, and Zbigniew Oziewicz. "Symbolic Calculation for Frölicher-Nijenhuis $\mathbb R $ -Algebra for Exploring in Electromagnetic Field Theory." In Computational Science - ICCS 2004, 552–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24687-9_70.
Full text"Nijenhuis-Richardson algebra and Fro¨licher-Nijenhuis Lie module." In Non-Associative Algebra and Its Applications, 145–64. Chapman and Hall/CRC, 2006. http://dx.doi.org/10.1201/9781420003451-17.
Full textGuzm√°n, Jos√©de Jes√∫s Cruz, and Zbigniew Oziewicz. "Nijenhuis-Richardson algebra and Fr√∂licher-Nijenhuis Lie module." In Lecture Notes in Pure and Applied Mathematics, 109–27. Chapman and Hall/CRC, 2006. http://dx.doi.org/10.1201/9781420003451.ch9.
Full textConference papers on the topic "Nijenhuis"
Golovko, Valentina. "Variational Poisson–Nijenhuis structures for evolution PDEs." In Proceedings of the International Conference on SPT 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812776174_0036.
Full textReports on the topic "Nijenhuis"
Yanovski, Alexander B. Poisson-Nijenhuis Structure for Generalized Zakharov-Shabat System in Pole Gauge on the Lie Algebra $\mathfrak{sl}(3,\mathbb{C})$. GIQ, 2012. http://dx.doi.org/10.7546/giq-12-2011-342-353.
Full text