Academic literature on the topic 'Nicotiana benthamiana Viruses'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nicotiana benthamiana Viruses.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nicotiana benthamiana Viruses"

1

Ilgekbaeva,, G. D., E. Sh Makhashov, G. Tulepova, D. Yessimkhankyzy, and S. T. Sadiev. "EXPRESSION OF THE SURFACE ANTIGEN BRUCELLA ABORTUS OMR16 IN NICOTIANA BENTHAMIANA PLANT." REPORTS 5, no. 333 (October 15, 2020): 81–85. http://dx.doi.org/10.32014/2020.2518-1483.122.

Full text
Abstract:
Brucellosis is one of the most contagious and infectious diseases with high incidence rates of cattle and humans in Kazakhstan. Using modern biotechnology techniques to develop vaccines that are reliable and affordable for farmers is an alternative solution to the problem. Plant viruses are often used as a vector for obtaining the expression of antigens of the pathogen. The grape virus A (BAB) is widely used among plant viruses. Brucella membrane proteins are the main objects of this research for futher development of vaccines or diagnostic texts against brucellosis, Membrane proteins (OMPs) are cell specific surface antigens that are immunogenic. OMPs are ideal candidates for the production of recombinant brucellosis vaccines. The object of the study was the outer membrane protein (Omp16), which plays an important role in the suppression of TNF-α production in macrophages. In this study, molecular cloning and analysis of the expression of the Omp16 gene, which was used to express the recombinant protein in plants, was carried out. We selected brucella from the vaccine strain of Brucella abortus 19, and the plant Nicotiana benthamiana, as the subjects for our research, since they widely used for the production of recombinant proteins, and they both appropriate for molecular genetic research. A viral vector was constructed to express the brucellosis antigen Omp16 in Nicotiana benthamiana plants. Nineteen explants were used for the regeneration of transgenic plants. As a result of this studies, the introduced gene of Omp16 was under the subgenomic promoter control of the ORF4 and was successfully expressed while maintaining the efficiency of expression in transgenic plants. The efficiency of viral vectors was evaluated at the level of transcription during expression of the protein Omp16 with viral proteins. The entire leaf blade was infiltrated; the density of Agrobacteria was 0.7. We were able to obtained transgenic plants Nicotiana benthamiana carrying the gene of capsid protein BAB, and the expression of the membrane antigen Omp16 in the viral vector was achieved by replacing the ORF4 with the Omp16 gene. The development of transgenic plants was carried out using agrobacterial transformation.
APA, Harvard, Vancouver, ISO, and other styles
2

Ruocco, Valentina, and Richard Strasser. "Transient Expression of Glycosylated SARS-CoV-2 Antigens in Nicotiana benthamiana." Plants 11, no. 8 (April 18, 2022): 1093. http://dx.doi.org/10.3390/plants11081093.

Full text
Abstract:
The current COVID-19 pandemic very dramatically shows that the world lacks preparedness for novel viral diseases. In addition to newly emerging viruses, many known pathogenic viruses such as influenza are constantly evolving, leading to frequent outbreaks with severe diseases and deaths. Hence, infectious viruses are a recurrent burden to our daily life, and powerful strategies to stop the spread of human pathogens and disease progression are of utmost importance. Transient plant-based protein expression is a technology that allows fast and highly flexible manufacturing of recombinant viral proteins and, thus, can contribute to infectious disease detection and prevention. This review highlights recent progress in the transient production of viral glycoproteins in N. benthamiana with a focus on SARS-CoV-2-derived viral antigens.
APA, Harvard, Vancouver, ISO, and other styles
3

Bally, Julia, Hyungtaek Jung, Cara Mortimer, Fatima Naim, Joshua G. Philips, Roger Hellens, Aureliano Bombarely, Michael M. Goodin, and Peter M. Waterhouse. "The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons." Annual Review of Phytopathology 56, no. 1 (August 25, 2018): 405–26. http://dx.doi.org/10.1146/annurev-phyto-080417-050141.

Full text
Abstract:
A decade ago, the value of Nicotiana benthamiana as a tool for plant molecular biologists was beginning to be appreciated. Scientists were using it to study plant-microbe and protein-protein interactions, and it was the species of choice with which to activate plasmid-encoded viruses, screen for gene functions with virus-induced gene silencing (VIGS), and transiently express genes by leaf agroinfiltration. However, little information about the species’ origin, diversity, genetics, and genomics was available, and biologists were asking the question of whether N. benthamiana is a second fiddle or virtuoso. In this review, we look at the increased knowledge about the species and its applications over the past decade. Although N. benthamiana may still be the sidekick to Arabidopsis, it shines ever more brightly with realized and yet-to-be-exploited potential.
APA, Harvard, Vancouver, ISO, and other styles
4

Schneider, William L., and Marilyn J. Roossinck. "Evolutionarily Related Sindbis-Like Plant Viruses Maintain Different Levels of Population Diversity in a Common Host." Journal of Virology 74, no. 7 (April 1, 2000): 3130–34. http://dx.doi.org/10.1128/jvi.74.7.3130-3134.2000.

Full text
Abstract:
ABSTRACT The levels of population diversity of three related Sindbis-like plant viruses, Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), and Cowpea chlorotic mottle virus(CCMV), in infections of a common host, Nicotiana benthamiana, established from genetically identical viral RNA were examined. Despite probably having a common evolutionary ancestor, the three viruses maintained different levels of population diversity. CMV had the highest levels of diversity, TMV had an intermediate level of diversity, and CCMV had no measurable level of diversity in N. benthamiana. Interestingly, the levels of diversity were correlated to the relative host range sizes of the three viruses. The levels of diversity also remained relatively constant over the course of serial passage. Closer examination of the CMV and TMV populations revealed biases for particular types of substitutions and regions of the genome that may tolerate fewer mutations.
APA, Harvard, Vancouver, ISO, and other styles
5

Goodin, Michael M., David Zaitlin, Rayapati A. Naidu, and Steven A. Lommel. "Nicotiana benthamiana: Its History and Future as a Model for Plant–Pathogen Interactions." Molecular Plant-Microbe Interactions® 21, no. 8 (August 2008): 1015–26. http://dx.doi.org/10.1094/mpmi-21-8-1015.

Full text
Abstract:
Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Additionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host–pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus-induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, interaction, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions currently used by the research community. In addition to addressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.
APA, Harvard, Vancouver, ISO, and other styles
6

Moreno, Marina, Belén Ojeda, Francisco J. Hernández-Walias, Eugenio Sanz-García, Tomás Canto, and Francisco Tenllado. "Water Deficit Improves Reproductive Fitness in Nicotiana benthamiana Plants Infected by Cucumber mosaic virus." Plants 11, no. 9 (May 4, 2022): 1240. http://dx.doi.org/10.3390/plants11091240.

Full text
Abstract:
Plants are concurrently exposed to biotic and abiotic stresses, including infection by viruses and drought. Combined stresses result in plant responses that are different from those observed for each individual stress. We investigated compensatory effects induced by virus infection on the fitness of hosts grown under water deficit, and the hypothesis that water deficit improves tolerance, estimated as reproductive fitness, to virus infection. Our results show that infection by Turnip mosaic virus (TuMV) or Cucumber mosaic virus (CMV) promotes drought tolerance in Arabidopsis thaliana and Nicotiana benthamiana. However, neither CMV nor TuMV had a positive impact on host reproductive fitness following withdrawal of water, as determined by measuring the number of individuals producing seeds, seed grains, and seed germination rates. Importantly, infection by CMV but not by TuMV improved the reproductive fitness of N. benthamiana plants when exposed to drought compared to watered, virus-infected plants. However, no such conditional phenotype was found in Arabidopsis plants infected with CMV. Water deficit did not affect the capacity of infected plants to transmit CMV through seeds. These findings highlight a conditional improvement in biological efficacy of N. benthamiana plants infected with CMV under water deficit, and lead to the prediction that plants can exhibit increased tolerance to specific viruses under some of the projected climate change scenarios.
APA, Harvard, Vancouver, ISO, and other styles
7

Boissinot, Sylvaine, Marie Ducousso, Véronique Brault, and Martin Drucker. "Bioluminescence Production by Turnip Yellows Virus Infectious Clones: A New Way to Monitor Plant Virus Infection." International Journal of Molecular Sciences 23, no. 22 (November 8, 2022): 13685. http://dx.doi.org/10.3390/ijms232213685.

Full text
Abstract:
We used the NanoLuc luciferase bioluminescent reporter system to detect turnip yellows virus (TuYV) in infected plants. For this, TuYV was genetically tagged by replacing the C-terminal part of the RT protein with full-length NanoLuc (TuYV-NL) or with the N-terminal domain of split NanoLuc (TuYV-N65-NL). Wild-type and recombinant viruses were agro-infiltrated in Nicotiana benthamiana, Montia perfoliata, and Arabidopsis thaliana. ELISA confirmed systemic infection and similar accumulation of the recombinant viruses in N. benthamiana and M. perfoliata but reduced systemic infection and lower accumulation in A. thaliana. RT-PCR analysis indicated that the recombinant sequences were stable in N. benthamiana and M. perfoliata but not in A. thaliana. Bioluminescence imaging detected TuYV-NL in inoculated and systemically infected leaves. For the detection of split NanoLuc, we constructed transgenic N. benthamiana plants expressing the C-terminal domain of split NanoLuc. Bioluminescence imaging of these plants after agro-infiltration with TuYV-N65-NL allowed the detection of the virus in systemically infected leaves. Taken together, our results show that NanoLuc luciferase can be used to monitor infection with TuYV.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhong, Xueyan, Hesheng Hou, and Wenping Qiu. "Integrity of Nonviral Fragments in Recombinant Tomato bushy stunt virus and Defective Interfering RNA Is Influenced by Silencing and the Type of Inserts." Molecular Plant-Microbe Interactions® 18, no. 8 (August 2005): 800–807. http://dx.doi.org/10.1094/mpmi-18-0800.

Full text
Abstract:
Recombinant plant viruses have the propensity to remove foreign inserts during replication. This process is virusspecific and occurs in a host-dependent manner. In the present study, we investigated the integrity of foreign inserts in recombinant plant viruses using a model system consisting of Tomato bushy stunt virus (TBSV) and its defective interfering RNA (DI). These were tested in Nicotiana benthamiana plants that were either wild type or transgenic for the green fluorescent protein (GFP) gene. GFP-derived inserts were retained in the recombinant TBSV and DI population that were inoculated onto GFPtransgenic N. benthamiana plants in which silencing of the GFP transgene was initiated, but they were removed from the virus and DIs that were maintained on wild-type plants. A foreign insert derived from an endogenous N. benthamiana gene encoding the H subunit of the magnesium chelatase (NbChlH) was deleted, whereas the fragment of an RNA-dependent RNA polymerase gene (NbRdRP1m) was retained in the recombinant TBSV population. These results demonstrate that the recombination of TBSV to remove nonviral fragments is influenced by silencing and the type of inserts.
APA, Harvard, Vancouver, ISO, and other styles
9

Siddiqui, Shahid Aslam, Cecilia Sarmiento, Mariliis Kiisma, Satu Koivumäki, Anne Lemmetty, Erkki Truve, and Kirsi Lehto. "Effects of viral silencing suppressors on tobacco ringspot virus infection in two Nicotiana species." Journal of General Virology 89, no. 6 (June 1, 2008): 1502–8. http://dx.doi.org/10.1099/vir.0.83621-0.

Full text
Abstract:
This study investigated the effects of silencing suppressors derived from six different viruses (P1, P19, P25, HcPro, AC2 and 2b), expressed in transgenic Nicotiana tabacum and Nicotiana benthamiana plants, on the infection pattern of tobacco ringspot virus (TRSV) potato calico strain. In N. benthamiana, this virus produced an initial infection with severe systemic symptoms, but the infection was strongly reduced within a few weeks as the plant recovered from the infection. P25 and HcPro silencing suppressors effectively prevented recovery in this host, allowing continuous accumulation of the viral RNA as well as of the virus-specific small interfering RNAs, in the systemically infected leaves. In the P1-, P19-, AC2- or 2b-expressing transgenic N. benthamiana, the recovery was not complete. Susceptibility of N. tabacum to this virus was temperature sensitive. At lower temperatures, up to 25 °C, the plants became systemically infected, but at higher temperatures, the infections were limited to the inoculated leaves. In these preventative conditions, all silencing suppressor transgenes (except P25, which was expressed at very low levels) allowed the establishment of systemic infections. Very strong and consistent systemic infections were observed in HcPro- and AC2-expressing plants.
APA, Harvard, Vancouver, ISO, and other styles
10

Canto, Tomas, Stuart A. MacFarlane, and Peter Palukaitis. "ORF6 of Tobacco mosaic virus is a determinant of viral pathogenicity in Nicotiana benthamiana." Journal of General Virology 85, no. 10 (October 1, 2004): 3123–33. http://dx.doi.org/10.1099/vir.0.80270-0.

Full text
Abstract:
Tobacco mosaic virus (TMV) contains a sixth open reading frame (ORF6) that potentially encodes a 4·8 kDa protein. Elimination of ORF6 from TMV attenuated host responses in Nicotiana benthamiana without alteration in virus accumulation. Furthermore, heterologous expression of TMV ORF6 from either potato virus X (PVX) or tobacco rattle virus (TRV) vectors enhanced the virulence of both viruses in N. benthamiana, also without effects on their accumulation. By contrast, the presence or absence of TMV ORF6 had no effect on host response or virus accumulation in N. tabacum plants infected with TMV or PVX. TMV ORF6 also had no effect on the synergism between TMV and PVX in N. tabacum. However, the presence of the TMV ORF6 did have an effect on the pathogenicity of a TRV vector in N. tabacum. In three different types of assay carried out in N. benthamiana plants, expression of TMV ORF6 failed to suppress gene silencing. Expression in N. benthamiana epidermal cells of the encoded 4·8 kDa protein fused to the green fluorescent protein at either end showed, in addition to widespread cytosolic fluorescence, plasmodesmatal targeting specific to both fusion constructs. The role of the ORF6 in host responses is discussed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nicotiana benthamiana Viruses"

1

Chewachong, Godwill Mih. "Engineering Plant Virus " Vaccines" Using Pepino mosaic virus as a Model." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1384203201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Valenzuela, Aguila Sofia. "Transformation of Nicotiana benthamiana with different BWYV (Beet western yellows virus) sequences to test for virus resistance Transformation von Nicotiana benthamiana mit verschiedenen Sequenzen des BWYV (Beet western yellows virus) zur Virus-Resistenztestung /." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=959528695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Varrelmann, Mark. "Begrenzung von heterologer Enkapsidierung und Rekombination bei pathogen-vermittelter Resistenz gegen das Plum pox virus der Pflaume (PPV)." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=958530033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Junyan. "NONHOST RESISTANCE TO BEAN POD MOTTLE VIRUS IN NICOTIANA BENTHAMIANA." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1372723537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fulton, Andrew Dale. "Monoclonal Antibody Expression and Novel Purification in Nicotiana benthamiana." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/43361.

Full text
Abstract:
Over the past few decades researchers and industrial professionals alike have realized the vast potential of monoclonal antibodies to treat diseases ranging from arthritis, immune and infectious diseases to cancer. There are a number of antibodies on the market that constitute a large portion of the biopharmaceutical niche in the drug industry. Blockbuster drugs (selling greater than $1 billion/year), include antibodies such as Avastin (bevacizumab), Herceptin (trastuzumab), Rituxan (rituximab), Humira (adalimumab) and Remicade (infliximab), which are cornerstones in this type of sector. With the cost of development to market approval rising astronomically for a new drug, new ways to produce and process these molecules becomes a paramount objective to ultimately help both patients and drug developers. Plants, such as Nicotiana benthamiana, offer a unique production platform due to their recently found ability to produce large amounts of therapeutic proteins in a quick manner. While production would be simple and cheap, purification would not be due to the presence of toxic compounds in ground plant tissue. The current methods to purify these molecules from plant extract include expensive affinity column steps (Protein A/G) that are difficult to scale-up to bed volumes that would be necessary for this technology. In the following paper, a method to purify a monoclonal antibody by non-Protein A/G resins is accomplished and compared to purification by Protein A. The modified process involved an UF/DF step, a precipitation of native impurities step using a charged polymer, hydrophobic interaction chromatography and hydrophobic charge induction chromatography. The yield of this modified process was 19.0%. This process compared favorably with Protein A due to the fact that even with washing steps including NaCl and Tween-20, the Protein A elution fraction still contained a large portion of host cell impurities. A chromatography step would need to be included before Protein A to both protect the column resin and provide a more purified immunoglobulin.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
6

Dieterich, Guido. "Molekularbiologische Untersuchungen zur subzellulären Lokalisierung des putativen Transportproteins - P19,5k - des beet western yellows virus (BWYV) und Erarbeitung der Grundlagen für eine gentechnisch zu erzeugende Resistenz gegen das BWYV." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960233989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Torres, Arzayus Maria Isabel. "Engineering yam mosaic virus resistance in Nicotiana benthamiana using genetic transformation techniques." Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mbewana, Sandiswa. "Development of Rift Valley fever virus candidate vaccines and reagents produced in Nicotiana benthamiana." Doctoral thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/25446.

Full text
Abstract:
Rift Valley fever (RVF) is a haemorrhagic fever agent caused by an infection with an enveloped negative-stranded RNA Rift Valley fever virus (RVFV). It belongs to the genus Phlebovirus in the family Bunyaviridae. The virus is spread by infected mosquitoes and affects ruminants and humans, causing high numbers of neonatal fatalities in animals and occasional fatalities in humans. It is endemic to parts of Africa and the Arabian Peninsula, but is described as an emerging virus due to the wide range of mosquitoes that could spread the disease into non-endemic areas, posing serious health and agricultural problems. The disease can be prevented by vaccination, but there is currently no Food and Drug Administration-approved RVFV vaccine that can be used outside endemic areas, while there are two live attenuated vaccines available for use in endemic areas. These vaccines have the potential for reversion, and are therefore not recommended for use in countries where RVFV is not endemic. This indicates the need for more RVFV vaccine research and development. This work focused on the development of a RVFV vaccine candidate that would allow for differentiation between infected and vaccinated animals as well as humans.
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Cheng Ying. "Characterization of innate immune response to «Nicotiana benthamiana»-derived Influenza H5 virus-like particles." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119400.

Full text
Abstract:
Current influenza vaccine manufacturing processes using chicken-embryonated egg technology is a time-consuming and laborious process, and is currently the major drawback in counteracting pandemic influenza strain. One solution to that problem is the use of plants to generate vaccine antigen. Virus-like particles (VLP), produced from the tobacco plant Nicotiana benthamiana, represent a cost-effective, alternative platform for influenza vaccine production. Previous studies have shown that the immunization with VLP expressing the hemagglutinin (HA) protein from influenza virus H5N1 (H5-VLP) produced in N. benthamianainduce protective immunity against challenge of cross-clade virus in mice and ferrets. In this study, we used human peripheral blood mononuclear cells (PBMC) to characterize the innate immune response to plant-derived influenza H5-VLP ex vivo. We successfully demonstrate the mitogenic property of H5-VLP on PBMC ex vivo. Furthermore, we detect up-regulation of activation marker in B cells and NK cells, and some T cells. Cytokine profile of the supernatant from VLP-stimulated sample suggests that inflammatory response dominates the innate immunity within first 48 hours and is produced by CD14+ monocytes. Our study demonstrates that tobacco plant-derived influenza VLP are capable of generating innate immune responses in naïve human PBMC, helping us to better understand the immunostimulatory nature of this potential vaccine candidate.
A l'heure actuelle, la plupart des vaccins contre les infections par le virus influenza sont produits à partir d'œufs de poule fécondés. Ce procédé long et fastidieux constitue l'un des principaux obstacles à la production rapide d'un vaccin lors d'une pandémie. Une solution à ce problème consiste en l'utilisation de plantes afin de générer les antigènes nécessaires à l'élaboration du vaccin. Les pseudovirus ou Virus-like particles (VLP) produites à partir de la plante de tabac Nicotiana benthamiana représentent une alternative moins couteuse et plus rapide pour la production de vaccins antigrippaux. Des études préalables ont démontré qu'une immunisation avec les VLP exprimant l'hémagglutinine (HA) du virus influenza H5N1 (H5-VLP) induisaient une immunité protective lors d'une infection par ce virus chez la souris et le furet. Dans notre étude, nous avons utilisé les cellules mononuclées du sang périphérique humain (PBMC) afin de préciser la réponse immunitaire innée suite à l'exposition ex vivo aux H5-VLP produites dans N. benthamiana. Nous avons démontré les propriétés mitogéniques des H5-VLP sur les PBMC ainsi qu'une activation des lymphocytes B, des cellules NK et de certaines sous populations de lymphocytes T. L'analyse des cytokines sécrétées dans le surnageant des PBMC exposés ex vivo aux VLP suggère qu'une réponse pro-inflammatoire prédomine 48h après exposition et semble résulter essentiellement d'une activation des monocytes CD14+. Notre étude démontre que les VLP produites à partir de la plante de tabac génèrent une réponse immunitaire innée dans les PBMC provenant de patients naïfs, nous permettant ainsi de mieux comprendre les propriétés immunostimulantes de ce nouveau type de vaccin.
APA, Harvard, Vancouver, ISO, and other styles
10

De, Figueiredo Pinto Gomes Pera Francisco. "Design and production of a candidate universal influenza A vaccine in Nicotiana benthamiana plants." Master's thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/27063.

Full text
Abstract:
The influenza A virus is responsible for 250,000 to 500,000 deaths every year worldwide and millions more could die in the event of a serious pandemic. Vaccines against influenza have existed for long, but until today they have been limited by extensive production times and reduced cross-protection between different strains of the virus. This leads to a recurrent need to update the vaccine composition every year, which is both costly and inadequate to fight pandemics. An innovative approach that could improve the vaccine efficacy has been recently developed based on the selection of conserved influenza epitopes with potential to induce broader immune responses. The 23-amino acid extracellular domain of the M2 protein (M2e) is highly conserved among different influenza A strains and thus it seems like an ideal candidate for a universal influenza vaccine. However, due to its small size, it is a poor immunogen when used on its own. The aim of this project was to produce M2e-presenting virus-like particles (VLPs) in Nicotiana benthamiana plants via Agrobacterium-mediated transient expression. Plants are increasingly being examined as alternative recombinant protein expression systems due to their safety, scalability and rapid production times. Moreover, numerous studies suggest the use of recombinant virus-like particles (VLPs) to increase the immunogenicity of antigens. Therefore, to obtain VLPs presenting the M2e epitope, I genetically engineered several different M2e-HA fusion proteins by replacing the hemagglutinin (HA) globular head and main epitope with five tandem repeats of M2e epitope sequences (5xM2e) from human, swine, and avian origin influenza A viruses. To increase the chances of obtaining VLPs, M2e-HA fusions either contained the HA stalk domain (5xM2e-HAstalk) or simply the transmembrane region (5xM2e-HAtrans). Furthermore, the tetramerizing leucine zipper derived from the General Control Protein (GCN4) was also included in some of the constructs to promote particle formation. In total, six different M2e-HA fusions were created: 5xM2e-GCN4-HAstalk, 5xM2e-GCN4-HAtrans, 5xM2e-HAstalk, 5xM2e-HAtrans, 1xM2e-HAstalk and 1xM2e-HAtrans. The expression of these proteins was optimized in plants by testing different conditions and using three different expression vectors. Overall, I was able to show expression after only 3 days post-infiltration for most of the M2e-HA v fusion proteins utilizing the pEAQ-HT and pRIC 3.0 expression vectors whereas expression levels with pTRAc were low or non-detectable. Once the expression of the M2e-HA fusions was optimized, the two proteins with the highest potential to form VLPs were selected for further characterization (5xM2e-HAstalk and 5xM2eHAtrans). Using transmission electron microscopy to analyse purified proteins, both 5xM2eHAstalk and 5xM2e-HAtrans were shown to assemble into VLPs resembling the shape and size of native HA VLPs. These VLPs could also be observed in the apoplastic fractions of infiltrated leaves. However, due to the low number of particles observed, the successful incorporation of the M2e peptide on the surface of the particles was inconclusive, as shown by M2e-specific immuno-gold labelling experiments. Furthermore, contrarily to previous studies, co-expression of the M2e-HA fusions with the M1 protein resulted in a decrease in recombinant protein accumulation and VLP formation in our plant system. A possible inhibition mechanism by the M1 protein is discussed. In summary, this research provides preliminary data to produce universal influenza vaccines in plants. I report here for the first time that M2e fused to either the stalk or transmembrane domain of the HA protein, can self-assemble into VLPs without any other proteins, in N. benthamiana plants. Future work on the immunogenicity of the VLPs produced in this study is required to confirm their potential as a universal influenza vaccine that can be rapidly produced.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nicotiana benthamiana Viruses"

1

Tang, Yang, Yizhen Lai, and Yule Liu. "Virus-Induced Gene Silencing Using Artificial miRNAs in Nicotiana benthamiana." In Methods in Molecular Biology, 99–107. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-278-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hayward, Andrew, Meenu Padmanabhan, and S. P. Dinesh-Kumar. "Virus-Induced Gene Silencing in Nicotiana benthamiana and Other Plant Species." In Methods in Molecular Biology, 55–63. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-682-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hashimoto, Masayoshi, Yasuyuki Yamaji, and Ken Komatsu. "Analysis of Antiviral Resistance Signaling Pathways by Virus-Induced Gene Silencing in Nicotiana benthamiana." In Methods in Molecular Biology, 85–95. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9635-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zou, Jing-Ze, De-Shui Liu, Xin Tong, Xiao-Peng Zhang, and Xian-Bing Wang. "RNA In Situ Hybridization of Detecting Cucumber Mosaic Virus in Shoots of Nicotiana benthamiana Plants." In Methods in Molecular Biology, 283–96. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1835-6_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vézina, Louis-P., Brian J. Ward, Marc-André D’Aoust, Manon Couture, Sonia Trépanier, Andrew Sheldon, and Nathalie Landry. "Influenza Virus-Like Particles Produced in Nicotiana benthamiana Protect Against a Lethal Viral Challenge in Mice." In Commercial Plant-Produced Recombinant Protein Products, 83–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43836-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moore, Lauren, Krystal Hamorsky, and Nobuyuki Matoba. "Production of Recombinant Cholera Toxin B Subunit in Nicotiana benthamiana Using GENEWARE® Tobacco Mosaic Virus Vector." In Methods in Molecular Biology, 129–37. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3289-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nicotiana benthamiana Viruses"

1

"Biogenesis of siRNA and miRNA upon infection of Nicotiana benthamiana plants with a virus and its mutants." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-184.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nicotiana benthamiana Viruses"

1

Mawassi, Munir, Adib Rowhani, Deborah A. Golino, Avichai Perl, and Edna Tanne. Rugose Wood Disease of Grapevine, Etiology and Virus Resistance in Transgenic Vines. United States Department of Agriculture, November 2003. http://dx.doi.org/10.32747/2003.7586477.bard.

Full text
Abstract:
Rugose wood is a complex disease of grapevines, which occurs in all growing areas. The disease is spread in the field by vector transmission (mealybugs). At least five elongated-phloem- limited viruses are implicated in the various rugose wood disorders. The most fully characterized of these are Grapevine virus A (GV A) and GVB, members of a newly established genus, the vitivirus. GVC, a putative vitivirus, is much less well characterized than GV A or GVB. The information regarding the role of GVC in the etiology and epidemiology of rugose wood is fragmentary and no sequence data for GVC are available. The proposed research is aimed to study the etiology and epidemiology of rugose wood disease, and to construct genetically engineered virus-resistant grapevines. The objectives of our proposed research were to construct transgenic plants with coat protein gene sequences designed to induce post-transcriptional gene silencing (pTGS); to study the epidemiology and etiology of rugose wood disease by cloning and sequencing of GVC; and surveying of rugose wood- associated viruses in Californian and Israeli vineyards. In an attempt to experimentally define the role of the various genes of GV A, we utilized the infectious clone, inserted mutations in every ORF, and studied the effect on viral replication, gene expression, symptoms and viral movement. We explored the production of viral RNAs in a GV A-infected Nicotiana benthamiana herbaceous host, and characterized one nested set of three 5'-terminal sgRNAs of 5.1, 5.5 and 6.0 kb, and another, of three 3'-terminal sgRNAs of 2.2, 1.8 and 1.0 kb that could serve for expression of ORFs 2-3, respectively. Several GV A constructs have been assembled into pCAMBIA 230 I, a binary vector which is used for Angrobacterium mediated transformation: GV A CP gene; two copies of the GV A CP gene arranged in the same antisense orientation; two copies of the GV A CP gene in which the downstream copy is in an antigens orientation; GV A replicase gene; GV A replicase gene plus the 3' UTR sequence; and the full genome of GV A. Experiments for transformation of N. benthamiana and grapevine cell suspension with these constructs have been initiated. Transgenic N. benthamiana plants that contained the CP gene, the replicase gene and the entire genome of GV A were obtained. For grapevine transformation, we have developed efficient protocols for transformation and successfully grapevine plantlets that contained the CP gene and the replicase genes of GV A were obtained. These plants are still under examination for expression of the trans genes. The construction of transgenic plants with GV A sequences will provide, in the long run, a means to control one of the most prevalent viruses associated with grapevines. Our many attempts to produce a cDNA library from the genome of GVC failed. For surveying of rugose wood associated viruses in California vineyards, samples were collected from different grape growing areas and tested by RT-PCR for GV A, GVB and GVD. The results indicated that some of the samples were infected with multiple viruses, but overall, we found higher incidence of GVB and GV A infection in California vineyards and new introduction varieties, respectively. In this research we also conducted studies to increase our understanding of virus - induced rootstock decline and its importance in vineyard productivity. Our results provided supporting evidence that the rootstock response to virus infection depends on the rootstock genotype and the virus type. In general, rootstocks are differ widely in virus susceptibility. Our data indicated that a virus type or its combination with other viruses was responsible in virus-induced rootstock decline. As the results showed, the growth of the rootstocks were severely affected when the combination of more than one virus was present.
APA, Harvard, Vancouver, ISO, and other styles
2

Epel, Bernard, and Roger Beachy. Mechanisms of intra- and intercellular targeting and movement of tobacco mosaic virus. United States Department of Agriculture, November 2005. http://dx.doi.org/10.32747/2005.7695874.bard.

Full text
Abstract:
To cause disease, plant viruses must replicate and spread locally and systemically within the host. Cell-to-cell virus spread is mediated by virus-encoded movement proteins (MPs), which modify the structure and function of plasmodesmata (Pd), trans-wall co-axial membranous tunnels that interconnect the cytoplasm of neighboring cells. Tobacco mosaic virus (TMV) employ a single MP for cell- cell spread and for which CP is not required. The PIs, Beachy (USA) and Epel (Israel) and co-workers, developed new tools and approaches for study of the mechanism of spread of TMV that lead to a partial identification and molecular characterization of the cellular machinery involved in the trafficking process. Original research objectives: Based on our data and those of others, we proposed a working model of plant viral spread. Our model stated that MPᵀᴹⱽ, an integral ER membrane protein with its C-terminus exposed to the cytoplasm (Reichel and Beachy, 1998), alters the Pd SEL, causes the Pd cytoplasmic annulus to dilate (Wolf et al., 1989), allowing ER to glide through Pd and that this gliding is cytoskeleton mediated. The model claimed that in absence of MP, the ER in Pd (the desmotubule) is stationary, i.e. does not move through the Pd. Based on this model we designed a series of experiments to test the following questions: -Does MP potentiate ER movement through the Pd? - In the presence of MP, is there communication between adjacent cells via ER lumen? -Does MP potentiate the movement of cytoskeletal elements cell to cell? -Is MP required for cell-to-cell movement of ER membranes between cells in sink tissue? -Is the binding in situ of MP to RNA specific to vRNA sequences or is it nonspecific as measured in vitro? And if specific: -What sequences of RNA are involved in binding to MP? And finally, what host proteins are associated with MP during intracellular targeting to various subcellular targets and what if any post-translational modifications occur to MP, other than phosphorylation (Kawakami et al., 1999)? Major conclusions, solutions and achievements. A new quantitative tool was developed to measure the "coefficient of conductivity" of Pd to cytoplasmic soluble proteins. Employing this tool, we measured changes in Pd conductivity in epidermal cells of sink and source leaves of wild-type and transgenic Nicotiana benthamiana (N. benthamiana) plants expressing MPᵀᴹⱽ incubated both in dark and light and at 16 and 25 ᵒC (Liarzi and Epel, 2005 (appendix 1). To test our model we measured the effect of the presence of MP on cell-to-cell spread of a cytoplasmic fluorescent probe, of two ER intrinsic membrane protein-probes and two ER lumen protein-probes fused to GFP. The effect of a mutant virus that is incapable of cell-to-cell spread on the spread of these probes was also determined. Our data shows that MP reduces SEL for cytoplasmic molecules, dilates the desmotubule allowing cell-cell diffusion of proteins via the desmotubule lumen and reduces the rate of spread of the ER membrane probes. Replicase was shown to enhance cell-cell spread. The data are not in support of the proposed model and have led us to propose a new model for virus cell-cell spread: this model proposes that MP, an integral ER membrane protein, forms a MP:vRNAER complex and that this ER-membrane complex diffuses in the lipid milieu of the ER into the desmotubule (the ER within the Pd), and spreads cell to cell by simple diffusion in the ER/desmotubule membrane; the driving force for spread is the chemical potential gradient between an infected cell and contingent non-infected neighbors. Our data also suggests that the virus replicase has a function in altering the Pd conductivity. Transgenic plant lines that express the MP gene of the Cg tobamovirus fused to YFP under the control the ecdysone receptor and methoxyfenocide ligand were generated by the Beachy group and the expression pattern and the timing and targeting patterns were determined. A vector expressing this MPs was also developed for use by the Epel lab . The transgenic lines are being used to identify and isolate host genes that are required for cell-to-cell movement of TMV/tobamoviruses. This line is now being grown and to be employed in proteomic studies which will commence November 2005. T-DNA insertion mutagenesis is being developed to identify and isolate host genes required for cell-to-cell movement of TMV.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography