To see the other types of publications on this topic, follow the link: Ni-Mn-Ga Thin Films.

Journal articles on the topic 'Ni-Mn-Ga Thin Films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ni-Mn-Ga Thin Films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Dubowik, J., Y. V. Kudryavtsev, and I. Gościańska. "Sputtered Ni-Mn-Ga thin films." International Journal of Applied Electromagnetics and Mechanics 23, no. 1-2 (July 3, 2006): 89–92. http://dx.doi.org/10.3233/jae-2006-729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chernenko, V. A., M. Ohtsuka, M. Kohl, V. V. Khovailo, and T. Takagi. "Transformation behavior of Ni–Mn–Ga thin films." Smart Materials and Structures 14, no. 5 (August 24, 2005): S245—S252. http://dx.doi.org/10.1088/0964-1726/14/5/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Hai Bo, Jin Yong Xu, and Wei Cai. "Surface Characteristics of Ni-Mn-Fe-Ga Sputtered Thin Films." Advanced Materials Research 194-196 (February 2011): 2290–95. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.2290.

Full text
Abstract:
The Ni-Mn-Fe-Ga shape memory alloy thin film was deposited onto silicon substrates by using radio-frequency (R.F.) magnetron sputtering technique. Chemical composition, surface morphology and crystallographic structure were systematically investigated by means of X-ray fluorescence (XRF), atomic force microscope (AFM) and X-ray diffraction (XRD). The experimental results show that the magnetron sputtering process has remarkable influence on the chemical compositions and surface characteristics of Ni-Mn-Fe-Ga alloy thin films. As the sputtering power ranging between 245W and 405W, Ni content of the thin films decreases with the sputtering power increasing, whereas Mn and Fe contents increase with increasing the sputtering power and Ga content almost keep a constant. The surface roughness and the average particle size of thin films increase with the increase of Ar working pressure and sputtering power. The film deposited at room temperature has a cubic L21 structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Novikov, A., E. A. Gan'shina, A. Granovsky, A. Zhukov, and V. Chernenko. "Magneto-Optical Spectroscopy of Heusler Alloys: Bulk Samples, Thin Films and Microwires." Solid State Phenomena 190 (June 2012): 335–38. http://dx.doi.org/10.4028/www.scientific.net/ssp.190.335.

Full text
Abstract:
We report magneto-optical spectra of the Heusler bulk alloys Ni-Mn-In, thin films Ni-Mn-Ga, microwires Ni-Mn-In and Ni-Mn-Ga in martensitic and austenitic states. Transversal Kerr effect (TKE) was studied at an angle of light incidence of 68° with respect to the sample plane, in the energy range 0.5 eV < E < 4.0 eV, at 50 350 K temperatures, and in magnetic fields up to 3.5 kOe. The TKE spectra profile does not change too much at martensitic transformation in Ni2MnGa thin films, only magnitudes of characteristic maxima decrease. The magneto-optical response of Ni2MnGa microwires is very similar to that for Ni2MnGa thin films. For most of studied bulk samples, the TKE signal is very weak (about 10-5), about two orders of magnitude smaller than for thin films, and in many cases could not be detected at all. It indicates the strong dependence of the magneto-optical response of Heusler alloys on the quality of optically or electrochemically polished surfaces and their microstructure.
APA, Harvard, Vancouver, ISO, and other styles
5

Chernenko, V. A., R. Lopez Anton, M. Kohl, M. Ohtsuka, I. Orue, and J. M. Barandiaran. "Magnetic domains in Ni–Mn–Ga martensitic thin films." Journal of Physics: Condensed Matter 17, no. 34 (August 12, 2005): 5215–24. http://dx.doi.org/10.1088/0953-8984/17/34/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chernenko, V. A., S. Besseghini, M. Hagler, P. Müllner, M. Ohtsuka, and F. Stortiero. "Properties of sputter-deposited Ni–Mn–Ga thin films." Materials Science and Engineering: A 481-482 (May 2008): 271–74. http://dx.doi.org/10.1016/j.msea.2006.12.206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aseguinolaza, I. R., I. Reyes-Salazar, A. V. Svalov, K. Wilson, W. B. Knowlton, P. Müllner, J. M. Barandiarán, E. Villa, and V. A. Chernenko. "Transformation volume strain in Ni-Mn-Ga thin films." Applied Physics Letters 101, no. 24 (December 10, 2012): 241912. http://dx.doi.org/10.1063/1.4772005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, S. Vinodh, R. K. Singh, M. Manivel Raja, A. Kumar, S. Bysakh, and M. Mahendran. "Microstructure and nanomechanical properties of Mn-rich Ni–Mn–Ga thin films." Intermetallics 71 (April 2016): 57–64. http://dx.doi.org/10.1016/j.intermet.2015.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shi, Jia Zi, Chuan Zhong Chen, and Xing Dang. "Magnetron Sputtering Applied in Ni-Mn-Ga Films Preparation." Advanced Materials Research 569 (September 2012): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amr.569.7.

Full text
Abstract:
Shape memory alloys (SMAs) thin films have attracted much attention in recent years as intelligent and functional materials because of their unique properties. Ferromagnetic shape memory alloys (FSMAs) show large straining output, high impetus and short response time induced by the magnetic field, compared with traditional shape memory alloys. In this paper, Ni-Mn-Ga ferromagnetic shape memory alloys flims prepared by magnetron sputtering are introduced, and the research direction of Ni-Mn-Ga films is presented.
APA, Harvard, Vancouver, ISO, and other styles
10

Tello, P. G., F. J. Castaño, R. C. O’Handley, S. M. Allen, M. Esteve, F. Castaño, A. Labarta, and X. Batlle. "Ni–Mn–Ga thin films produced by pulsed laser deposition." Journal of Applied Physics 91, no. 10 (2002): 8234. http://dx.doi.org/10.1063/1.1452222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Aseguinolaza, I. R., I. Orue, A. V. Svalov, K. Wilson, P. Müllner, J. M. Barandiarán, and V. A. Chernenko. "Martensitic transformation in Ni–Mn–Ga/Si(100) thin films." Thin Solid Films 558 (May 2014): 449–54. http://dx.doi.org/10.1016/j.tsf.2014.02.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dubowik, J., I. Gościańska, and Y. Kudryavtsev. "Ferromagnetic resonance in Ni-Mn-Ga thin films and thin-film tubes." European Physical Journal Special Topics 158, no. 1 (May 2008): 113–18. http://dx.doi.org/10.1140/epjst/e2008-00662-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ning, R., Z. P. Yang, Z. Y. Gao, X. Z. Cao, and W. Cai. "Proton irradiation induced phase transformation in Ni-Mn-Ga thin films." Materials Science and Engineering: B 266 (April 2021): 115078. http://dx.doi.org/10.1016/j.mseb.2021.115078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Castaño, F. J., B. Nelson-Cheeseman, R. C. O’Handley, C. A. Ross, C. Redondo, and F. Castaño. "Structure and thermomagnetic properties of polycrystalline Ni–Mn–Ga thin films." Journal of Applied Physics 93, no. 10 (May 15, 2003): 8492–94. http://dx.doi.org/10.1063/1.1555976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Aseguinolaza, I. R., V. Golub, O. Y. Salyuk, B. Muntifering, W. B. Knowlton, P. Müllner, J. M. Barandiarán, and V. A. Chernenko. "Self-patterning of epitaxial Ni–Mn–Ga/MgO(001) thin films." Acta Materialia 111 (June 2016): 194–201. http://dx.doi.org/10.1016/j.actamat.2016.03.065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chanda, Anupama, Joydip Sengupta, and Chacko Jacob. "Well-Ordered "Ripple-Shaped" Microstructures of Mn Thin Films on GaAs Substrates." Advanced Science, Engineering and Medicine 11, no. 11 (November 1, 2019): 1142–47. http://dx.doi.org/10.1166/asem.2019.2434.

Full text
Abstract:
This study was aimed to investigate the thickness dependent morphological changes of Mn films deposited on GaAs substrates by thermal evaporation technique. Ni films were deposited under same conditions to perform comparative study of the morphological changes with respect to the Mn films. The scanning electron microscopy and atomic force microscopy studies revealed ripple-shaped structure of Mn film with good periodicity, while Ni film only exhibited small granules deposited throughout the surface. The influence of the thickness of the Mn film in producing the ripple structure was clearly observed. In addition, the annealing time was considered as the major parameter to control the ordering of the ripple structure. X-ray diffraction pattern indicated the formation of different phases of Ga-Mn and Mn-As due to diffusion of atoms during annealing. A model for the creation of stress-driven microstructure is proposed which indicates that Mn thin films grow on GaAs substrates in three stages: in the primary stage, the growth occurs via two-dimensional nucleation process; as the thickness increases, the stress is released by the film via creation of additional surface roughness which produce ripples; and finally an island-like growth occurs because of the non-uniform distribution of stress along the surface of the film.
APA, Harvard, Vancouver, ISO, and other styles
17

Chernenko, V. A., R. L. Anton, J. M. Barandiaran, I. Orue, S. Besseghini, M. Ohtsuka, and A. Gambardella. "MFM Domain Imaging of Textured Ni-Mn-Ga/MgO(100) Thin Films." IEEE Transactions on Magnetics 44, no. 11 (November 2008): 3040–43. http://dx.doi.org/10.1109/tmag.2008.2001652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Doyle, S., V. A. Chernenko, S. Besseghini, A. Gambardella, M. Kohl, P. Müllner, and M. Ohtsuka. "Residual stress in Ni-Mn-Ga thin films deposited on different substrates." European Physical Journal Special Topics 158, no. 1 (May 2008): 99–105. http://dx.doi.org/10.1140/epjst/e2008-00660-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Aseguinolaza, I. R., I. Orue, A. V. Svalov, V. A. Chernenko, S. Besseghini, and J. M. Barandiarán. "Fabrication conditions and transformation behavior of epitaxial Ni–Mn–Ga thin films." Journal of Materials Science 47, no. 8 (December 28, 2011): 3658–62. http://dx.doi.org/10.1007/s10853-011-6212-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Takhsha Ghahfarokhi, Milad, Federica Celegato, Gabriele Barrera, Francesca Casoli, Paola Tiberto, and Franca Albertini. "Dewetting Process in Ni-Mn-Ga Shape-Memory Heusler: Effects on Morphology, Stoichiometry and Magnetic Properties." Crystals 12, no. 12 (December 15, 2022): 1826. http://dx.doi.org/10.3390/cryst12121826.

Full text
Abstract:
In this work, dewetting process has been investigated in shape-memory Heuslers. To this aim, series of high-temperature annealing (1100–1150 K) have been performed at high vacuum (time is varied in the range of 55–165 min) in Ni-Mn-Ga epitaxial thin films grown on MgO(001). The process kinetics have been followed by studying the evolution of morphology and composition. In particular, we report the initiation of the dewetting process by the formation of symmetric holes in the films. The holes propagate and integrate, leaving micrometric and submicron islands of the material, increasing the average roughness of the films by a factor of up to around 30. The dewetting process is accompanied by severe Ga and Mn sublimation, and Ni-Ga segregation, which significantly modify the magnetic properties of the films measured at each stage. The annealed samples show a relatively weak magnetic signal at room temperature with respect to the pristine sample.
APA, Harvard, Vancouver, ISO, and other styles
21

L'vov, V. A., V. Golub, O. Salyuk, J. M. Barandiarán, and V. A. Chernenko. "Transformation volume effect on the magnetic anisotropy of Ni-Mn-Ga thin films." Journal of Applied Physics 117, no. 3 (January 21, 2015): 033901. http://dx.doi.org/10.1063/1.4906097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jetta, N., N. Ozdemir, S. Rios, D. Bufford, I. Karaman, and X. Zhang. "Phase transformations in sputtered Ni–Mn–Ga magnetic shape memory alloy thin films." Thin Solid Films 520, no. 9 (February 2012): 3433–39. http://dx.doi.org/10.1016/j.tsf.2011.12.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhu, Jiachen, Changlong Tan, WenBin Zhao, ZhaiPing Yang, Kun Zhang, and Wei Cai. "The Crystallization Kinetics of Ni-Mn-Ga Magnetic Shape Memory Alloy Thin Films." Journal of Electronic Materials 48, no. 4 (January 31, 2019): 2137–43. http://dx.doi.org/10.1007/s11664-019-06987-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pereira, M. J., A. A. C. S. Lourenço, and V. S. Amaral. "Structural and Electromagnetic Properties of Ni-Mn-Ga Thin Films Deposited on Si Substrates." EPJ Web of Conferences 75 (2014): 03006. http://dx.doi.org/10.1051/epjconf/20147503006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hughes, R. A., J. F. Britten, P. A. Dube, J. S. Preston, G. A. Botton, and M. Niewczas. "Magnetocaloric effect in Ni-Mn-Ga thin films under concurrent magnetostructural and Curie transitions." Journal of Applied Physics 110, no. 1 (July 2011): 013910. http://dx.doi.org/10.1063/1.3602088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Schleicher, B., R. Niemann, A. Diestel, R. Hühne, L. Schultz, and S. Fähler. "Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications." Journal of Applied Physics 118, no. 5 (August 7, 2015): 053906. http://dx.doi.org/10.1063/1.4927850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Vinodh Kumar, S., R. K. Singh, S. Seenithurai, S. Bysakh, M. Manivel Raja, and M. Mahendran. "Phase structure and magnetic properties of the annealed Mn-rich Ni–Mn–Ga ferromagnetic shape memory thin films." Materials Research Bulletin 61 (January 2015): 95–100. http://dx.doi.org/10.1016/j.materresbull.2014.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bernard, Florent, Patrick Delobelle, Laurent Hirsinger, and Christophe Rousselot. "Structural and Mechanical Characterizations of Ni-Mn-Ga Thin Films Deposited by R.F. Sputtering and Heat-Treated." Materials Science Forum 583 (May 2008): 213–28. http://dx.doi.org/10.4028/www.scientific.net/msf.583.213.

Full text
Abstract:
The near-stoichiometric Ni2MnGa ferromagnetic alloys are one of these smart materials, that show a great interest when they are deposited as a thin film by rf sputtering. These thin films of shape memory alloys (SMAs) are prospective materials for micro and nanosystem applications. However, the properties of the SMAs polycrystalline thin films depend strongly on their structure and internal stress, which develop during the sputtering process and also during the post-deposition annealing treatment. In this study, 1μm Ni55Mn23Ga22 thin films were deposited at 0.45 and 1 Pa of Ar and their composition, crystallographic structure, internal stress, indentation modulus, hardness and deflection induced by magnetic field were systematically studied as a function of the temperature of the silicon substrate ranging from 298 to 873 K and the vacuum annealing treatment at 873 K for 21 and 36 ks. A silicon wafer having a native amorphous thin SiOx buffer layer was used as a substrate. This substrate influences the microstructure and blocks the diffusion process during the heat treatment. The crystal structure of the martensitic phase in each film was changed systematically from bct or 10M or 14M. In addition, the evolution of the mechanical properties such as means stress, roughness, hardness and indentation modulus with the temperature (of substrate or of heat treatment) were measured and correlated to crystal structure and morphology changes. It is concluded that the response of a free-standing magnetic SMAs films to a magnetic field of 200 kA/m depends strongly on the martensitic structure, internal mechanical stress (mean and gradient) and magnetic properties. The free-standing annealed film at 873 K for 36 ks demonstrates a considerable magnetic actuation associated with bct or 10M or 14M martensitic structures.
APA, Harvard, Vancouver, ISO, and other styles
29

Recarte, V., J. I. Pérez-Landazábal, V. Sánchez-Alárcos, V. A. Chernenko, and M. Ohtsuka. "Magnetocaloric effect linked to the martensitic transformation in sputter-deposited Ni–Mn–Ga thin films." Applied Physics Letters 95, no. 14 (October 5, 2009): 141908. http://dx.doi.org/10.1063/1.3246149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Vinodh Kumar, S., M. Mahendran, M. Manivel Raja, V. L. Niranjani, and P. K. Mukhopadhyay. "Phase structure evolution on Ni-Mn-Ga/Si (100) thin films: Effect of substrate temperature." Intermetallics 101 (October 2018): 18–26. http://dx.doi.org/10.1016/j.intermet.2018.07.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Liu, C., Z. Y. Gao, X. An, H. B. Wang, L. X. Gao, and W. Cai. "Surface characteristics and nanoindentation study of Ni–Mn–Ga ferromagnetic shape memory sputtered thin films." Applied Surface Science 254, no. 9 (February 2008): 2861–65. http://dx.doi.org/10.1016/j.apsusc.2007.10.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ranzieri, Paolo, Simone Fabbrici, Lucia Nasi, Lara Righi, Francesca Casoli, Volodymyr A. Chernenko, Elena Villa, and Franca Albertini. "Epitaxial Ni–Mn–Ga/MgO(100) thin films ranging in thickness from 10 to 100nm." Acta Materialia 61, no. 1 (January 2013): 263–72. http://dx.doi.org/10.1016/j.actamat.2012.09.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chernenko, V. A., R. Lopez Anton, M. Kohl, J. M. Barandiaran, M. Ohtsuka, I. Orue, and S. Besseghini. "Structural and magnetic characterization of martensitic Ni–Mn–Ga thin films deposited on Mo foil." Acta Materialia 54, no. 20 (December 2006): 5461–67. http://dx.doi.org/10.1016/j.actamat.2006.06.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Álvarez-Alonso, P., A. Pérez-Checa, I. R. Aseguinolaza, J. Alonso, A. V. Svalov, V. A. Chernenko, and J. M. Barandiarán. "Fabrication of Patterned Ferromagnetic Shape Memory Thin Films." Key Engineering Materials 644 (May 2015): 219–22. http://dx.doi.org/10.4028/www.scientific.net/kem.644.219.

Full text
Abstract:
We report two possible routes of fabrication of large surfaces of ferromagnetic shape memory antidots with tunable pore size and center-to-center distances. By using the drop coating method, we have prepared a large area of 2D arrays (typically 1cm2) of polystyrene spheres (PS) (1.4±0.1μm diameter) on a Si substrate. We have used reactive ion etching with a gas mixture of O2(12sccm) and Ar (5sccm) to reduce the diameter of the PS spheres whereby controlling the size of pores. The film deposition was performed on a substrate heated at 500oC (route 1) and at room temperature with subsequent annealing in a furnace at 500oC for 4 hours (route 2). Route 1 proved to be promising but more work is needed to optimize it. The antidots of Ni-Mn-Ga obtained along route 2 are ferromagnetic with a Curie temperature ~100oC, and a spread martensitic transformation (between-100oC and-30oC).
APA, Harvard, Vancouver, ISO, and other styles
35

Leicht, P., A. Laptev, M. Fonin, Y. Luo, and K. Samwer. "Microstructure and atomic configuration of the (001)-oriented surface of epitaxial Ni–Mn–Ga thin films." New Journal of Physics 13, no. 3 (March 11, 2011): 033021. http://dx.doi.org/10.1088/1367-2630/13/3/033021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yang, Zhai-Ping, Chang-Long Tan, Zhi-Yong Gao, Yuan Gao, and Wei Cai. "Effect of proton irradiation on microstructural and magnetic properties of ferromagnetic Ni–Mn–Ga thin films." Thin Solid Films 632 (June 2017): 10–16. http://dx.doi.org/10.1016/j.tsf.2017.04.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Annadurai, A., A. K. Nandakumar, S. Jayakumar, M. D. Kannan, M. Manivel Raja, S. Bysak, R. Gopalan, and V. Chandrasekaran. "Composition, structure and magnetic properties of sputter deposited Ni–Mn–Ga ferromagnetic shape memory thin films." Journal of Magnetism and Magnetic Materials 321, no. 6 (March 2009): 630–34. http://dx.doi.org/10.1016/j.jmmm.2008.10.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Vinodh Kumar, S., S. Seenithurai, M. Manivel Raja, and M. Mahendran. "Structural and Magnetic Properties of Sputter-Deposited Polycrystalline Ni-Mn-Ga Ferromagnetic Shape-Memory Thin Films." Journal of Electronic Materials 44, no. 10 (June 4, 2015): 3761–67. http://dx.doi.org/10.1007/s11664-015-3819-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hakola, Antti, Oleg Heczko, Akusti Jaatinen, Ville Kekkonen, and Timo Kajava. "Substrate-free structures of iron-doped Ni-Mn-Ga thin films prepared by pulsed laser deposition." Journal of Physics: Conference Series 59 (April 1, 2007): 122–25. http://dx.doi.org/10.1088/1742-6596/59/1/026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yang, B., Z. B. Li, Y. D. Zhang, G. W. Qin, C. Esling, O. Perroud, X. Zhao, and L. Zuo. "Microstructural features and orientation correlations of non-modulated martensite in Ni–Mn–Ga epitaxial thin films." Acta Materialia 61, no. 18 (October 2013): 6809–20. http://dx.doi.org/10.1016/j.actamat.2013.07.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, C., H. W. Mu, L. X. Gao, W. J. Ma, X. An, Z. Y. Gao, and W. Cai. "Growth of Ni–Mn–Ga high-temperature shape memory alloy thin films by magnetron sputtering technique." Applied Surface Science 256, no. 22 (September 2010): 6655–59. http://dx.doi.org/10.1016/j.apsusc.2010.04.065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yang, Bo, Yudong Zhang, Zongbin Li, Gaowu Qin, Claude Esling, Xiang Zhao, and Liang Zuo. "Crystallographic orientation of modulated martensite in epitaxially grown Ni–Mn–Ga thin film." Thin Solid Films 584 (June 2015): 90–93. http://dx.doi.org/10.1016/j.tsf.2014.11.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Aseguinolaza, I. R., V. Golub, J. M. Barandiarán, M. Ohtsuka, P. Müllner, O. Y. Salyuk, and V. A. Chernenko. "Martensitic transformation and magnetic anisotropy in Ni-Mn-Ga/NaCl(001) thin films probed by ferromagnetic resonance." Applied Physics Letters 102, no. 18 (May 6, 2013): 182401. http://dx.doi.org/10.1063/1.4804376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chernenko, V. A., M. Kohl, M. Ohtsuka, T. Takagi, V. A. L’vov, and V. M. Kniazkyi. "Thickness dependence of transformation characteristics of Ni–Mn–Ga thin films deposited on alumina: Experiment and modeling." Materials Science and Engineering: A 438-440 (November 2006): 944–47. http://dx.doi.org/10.1016/j.msea.2006.02.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Annadurai, A., M. Manivel Raja, K. Prabahar, Atul Kumar, M. D. Kannan, and S. Jayakumar. "Stress analysis, structure and magnetic properties of sputter deposited Ni–Mn–Ga ferromagnetic shape memory thin films." Journal of Magnetism and Magnetic Materials 323, no. 22 (November 2011): 2797–801. http://dx.doi.org/10.1016/j.jmmm.2011.06.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Alexandrakis, Vasileios, José Manuel Barandiaran, Anabel Pérez-Checa, Patricia Lázpita, Peer Decker, Steffen Salomon, Jorge Feuchtwanger, Alfred Ludwig, and Volodymyr Chernenko. "Combinatorial synthesis of Ni–Mn–Ga-(Fe,Co,Cu) high temperature ferromagnetic shape memory alloys thin films." Scripta Materialia 178 (March 2020): 104–7. http://dx.doi.org/10.1016/j.scriptamat.2019.10.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sharma, Amit, Sangeneni Mohan, and Satyam Suwas. "Structural transformations in highly oriented seven modulated martensite Ni–Mn–Ga thin films on an Al2O3 substrate." Journal of Materials Research 31, no. 19 (September 19, 2016): 3016–26. http://dx.doi.org/10.1557/jmr.2016.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yang, Bo, Zongbin Li, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, and Liang Zuo. "Crystallography and Microstructure of 7M Martensite in Ni-Mn-Ga Thin Films Epitaxially Grown on (1 1 2¯ 0)-Oriented Al2O3 Substrate." Materials 15, no. 5 (March 4, 2022): 1916. http://dx.doi.org/10.3390/ma15051916.

Full text
Abstract:
Epitaxial Ni-Mn-Ga thin films have been extensively investigated, due to their potential applications in magnetic micro-electro-mechanical systems. It has been proposed that the martensitic phase in the <1 1 0>A-oriented film is much more stable than that in the <1 0 0>A-oriented film. Nevertheless, the magnetic properties, microstructural features, and crystal structures of martensite in such films have not been fully revealed. In this work, the <1 1 0>A-oriented Ni51.0Mn27.5Ga21.5 films with different thicknesses were prepared by epitaxially growing on Al2O3(1 1 2¯ 0) substrate by magnetron sputtering. The characterization by X-ray diffraction technique and transmission electron microscopy revealed that all the Ni51.0Mn27.5Ga21.5 films are of 7M martensite at the ambient temperature, with their Type-I and Type-II twinning interfaces nearly parallel to the substrate surface.
APA, Harvard, Vancouver, ISO, and other styles
49

Golub, Vladimir, K. M. Reddy, Volodymyr Chernenko, Peter Müllner, Alex Punnoose, and Makoto Ohtsuka. "Ferromagnetic resonance properties and anisotropy of Ni-Mn-Ga thin films of different thicknesses deposited on Si substrate." Journal of Applied Physics 105, no. 7 (April 2009): 07A942. http://dx.doi.org/10.1063/1.3075395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jae-Pyoung Ahn, Ning Cheng, T. Lograsso, and K. M. Krishnan. "Magnetic properties, structure and shape-memory transitions in Ni-Mn-Ga thin films grown by ion-beam sputtering." IEEE Transactions on Magnetics 37, no. 4 (July 2001): 2141–43. http://dx.doi.org/10.1109/20.951103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography