Dissertations / Theses on the topic 'Ni-Based catalysts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Ni-Based catalysts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Miranda, Morales Bárbara Cristina. "HYDROGENOLYSIS OF GLYCEROL OVER NI-BASED CATALYSTS." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/284041.
Full textWorld demand for energy, chemicals and products is increasing every year. Current production systems and consumption patterns are now unsustainable. New alternative ways must be developed to satisfy not only the energy needs and the production of chemicals but also for a more friendly effect on the environment. Biomass resources such as glycerol represent one alternative to this. The catalyst role in the mechanism of the cleavage of the C-C and C-O bonds which modulates the routes in the glycerol conversion is the key to control the selectivity to target products. Because of that, this research work wishes to contribute with the development of catalysts for the catalytic transformation of glycerol to high value-added chemicals, and to understand the catalyst structure relationship with the catalytic performance. The attention of the present research is devoted to the glycerol hydrogenolysis over Ni based catalysts. The catalytic conversion of glycerol in gas phase over Ni/γ-Al2O3 catalyst at atmospheric pressure and 573 K in the presence of hydrogen in a fixed bed reactor was studied. Different reduction temperatures of the Ni samples were used as parameter to evaluate its effect on the catalytic performance. Then, the effect of Cu introduction into Ni in the catalytic glycerol conversion was also studied. Different Ni/Cu atomic ratios of 8/1, 4/1, 2/1, 1/1, 1/2, 1/4, 1/8 were studied.
Cárdenas-Arenas, Andrea. "Ni-based catalysts supported on CeO2 for CO2 valorisation." Doctoral thesis, Universidad de Alicante, 2021. http://hdl.handle.net/10045/115053.
Full textAlbarazi, Abdulkader. "Development of Ni-based catalysts for methane dry reforming application." Paris 6, 2013. http://www.theses.fr/2013PA066814.
Full textHouache, Mohamed Seif Eddine. "Efficient Nanostructured Ni-Based Catalysts for Electrochemical Valorization of Glycerol." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41208.
Full textMukka, Mayuri. "Parametric study of the partial oxidation of propane over Ni and Pt based catalysts." Morgantown, W. Va. : [West Virginia University Libraries], 2010. http://hdl.handle.net/10450/11243.
Full textTitle from document title page. Document formatted into pages; contains xiii, 130 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 125-129).
González, Arcos Angélica Viviana. "RhPt and Ni based catalysts for fuel reforming in energy conversion." Doctoral thesis, KTH, Kemisk teknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160026.
Full textQC 20150213
Moni, Lucky. "Ni(II) and Pd(II) based catalysts for α-olefin polymerisation." Master's thesis, University of Cape Town, 1999. http://hdl.handle.net/11427/9955.
Full textYan, Wei. "Nickel-based Catalysts for Urea Electro-oxidation." Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1391419479.
Full textCao, Pengfei. "The development of Ni based catalysts for carbon dioxide reforming of methane." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/46876/.
Full textPegios, Nikolaos [Verfasser], Regina [Akademischer Betreuer] Palkovits, and Matthias [Akademischer Betreuer] Wessling. "Ni-based catalysts for the dry reforming of methane / Nikolaos Pegios ; Regina Palkovits, Matthias Weßling." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/117652805X/34.
Full textPegios, Nikolaos Verfasser], Regina [Akademischer Betreuer] [Palkovits, and Matthias [Akademischer Betreuer] Wessling. "Ni-based catalysts for the dry reforming of methane / Nikolaos Pegios ; Regina Palkovits, Matthias Weßling." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/117652805X/34.
Full textDaoura, Oscar. "Towards anti-coking and anti-sintering Ni@Silica based catalysts for the dry reforming of methane." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS679.
Full textDry reforming of methane is a process for the conversion of CH4 and CO2 into “syngas”, a gaseous mixture of H2 and CO (with a molar ratio value of 1) that can serve as feedstock for the production of liquid fuel by the mean of Fischer-Tropsch procedure. Nickel-based catalysts are promising candidates for this reaction displaying high activity, lower cost and wider availability than noble metal-based materials but deactivating by sintering and/or coke deposition. Stabilization of Ni0 nanoparticles within siliceous supports either by confinement and/or by improving their dispersion and interaction with the support are among the best and the less expensive methods to overcome the deactivation in dry reforming which represents the main objective for this work. Here, new stable nickel-based catalysts were synthesized, characterized and tested in dry reforming. Three main issues were examined: (i) Testing the efficiency of new mesoporous supports (mesocellular silica foams) using different nickel precursors (salt or colloidal form) incorporated by impregnations or pH adjustment assisted one-pot methods, (ii) designing highly dispersed nickel-based mesoporous monoliths through an original sol-gel method (iii) controlling the nickel size, dispersion and therefore its interaction with the support onto non-porous silica carriers by the mean of phyllosilicates. Monoliths of the SBA-15 type incorporating Ni0 by a one-pot method, and Ni0 obtained through the reduction of nickel phyllosilicates turned out to be the most stable and efficient catalysts
Yu, Zhiqiang. "Transient Studies of Ni-, Cu-Based Electrocatalysts in CH4 Solid Oxide Fuel Cell." Akron, OH : University of Akron, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1194625466.
Full text"December, 2007." Title from electronic dissertation title page (viewed 03/12/2008) Advisor, Steven S. C. Chuang; Committee members, Lu-Kwang Ju, Edward Evans, W. B. Arbuckle, Stephen Z. D. Cheng; Department Chair, Lu-Kwang Ju; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
Pane, Flavia. "Kinetic analysis of Phenol Steam Reforming over Rh and Ni-Co based catalysts: identification of reaction’s pathway." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Find full textLaw, Yeuk Ting. "Investigation of reaction networks and active sites in ethanol steam reforming reaction over Ni and Co-based catalysts." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00869963.
Full textWilson, Karen E. "Investigations into the role of α-amino acids as chiral modifiers for Ni-based enantioselective heterogeneous hydrogenation catalysts." Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/3108.
Full textGehrtz, Paul Henry [Verfasser], and Ivana [Akademischer Betreuer] Fleischer. "Pd- and Ni-based catalysts for mild C-S bond activation and formation / Paul Henry Gehrtz ; Betreuer: Ivana Fleischer." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/120277394X/34.
Full textGehrtz, Paul [Verfasser], and Ivana [Akademischer Betreuer] Fleischer. "Pd- and Ni-based catalysts for mild C-S bond activation and formation / Paul Henry Gehrtz ; Betreuer: Ivana Fleischer." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/120277394X/34.
Full textKaram, Leila. "New routes of preparation of active and stable mesoporous Ni-alumina based catalysts for methane dry reforming and CO2 methanation." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS163.pdf.
Full textDry reforming of methane (DRM) is a process that converts CH4 and CO2 gases into syngas, a gaseous mixture of H2 and CO. Ni based catalysts proved to be suitable for the reaction due to their good activity, wider availability and lower cost than noble-based materials. However, these catalysts are not stable due to Ni sintering and coke deposition. In this thesis we developed two different synthesis routes of mesoporous Ni-Al2O3 based catalysts that can occlude Ni inside the pores achieving high activity and stability in DRM. A set of complimentary physicochemical techniques was systematically applied to thoroughly investigate the materials properties at all steps of preparation and activation. The first approach embraces synthesis of mesoporous Ni-Mg-Al2O3 materials by one-pot EISA strategy. Results demonstrate that 15 wt% Mg (optimum loading) based sample contribute to high and homogenous dispersion of both Ni and Mg, preserving ordered mesoporous Al2O3 walls. The good structural and textural characteristics in addition to the enhanced basicity reinforce activity and stability. The second method involves synthesizing new mesoporous Ni-Al2O3 materials using metal-organic framework as sacrificial template. This procedure results in small Ni nanoparticles homogeneously dispersed and stabilized within the high surface area support resisting sintering and inhibiting carbon nanotubes formation during reforming reaction. Based on catalytic tests completed by thermodynamics calculations, the synthesized materials proved to be eficient not only for dry reforming of methane, but also for CO2 methanation reaction and dry reforming of waste pyrolysis products
Hasrack, Golshid. "Tailoring Selectivity with Different Plasma Sources." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS402.
Full textOne of the greatest challenges for humanity in this century is the fight against the constant increase of greenhouse gases in the atmosphere, in particular carbon dioxide CO2. Declining or stabilizing these emissions by developing innovative solutions in order to capture and transform (CCU) the inevitably gas produced CO2 are major challenges for the next decades. Here in this study, we will focus on the CO2 methanation reaction (Sabatier reaction) as a promising approach for CO2 reduction since the generated methane can be readily stored in the existing gas network or used as raw materials for valuable chemical production. By avoiding the critical conditions of high temperatures and pressure needed in conventional thermal approach and intersecting the requirements for flexible production by renewable energy can be achieved by combining plasma technology with catalysis. Despite the fact that the general principles of plasma catalysis are described, it is yet a new field of research with many unsolved aspects to be discovered. Hence, in this work, we will attempt to show some of these aspects by studying the impact of promotional effects on plasma properties in a packed bed Dielectric Barrier Discharge “DBD” plasma reactor, which allow to highlight the synergy between plasma and the catalyst. This PhD thesis as a multidisciplinary study, first will focus on the effect of promoters and their optimum loading on Ni/CeO2 catalyst for the CO2 methanation reaction in the presence of the plasma. In the second step this series of catalysts will be intentionally supported on HUSY zeolites to investigate the effect of physicochemical properties of the zeolite-based catalyst on the energy efficiency of CO2 methanation. This work will grant a new methodology to select the most appropriate zeolite-based catalysts in terms of energy efficiency for DBD plasma catalytic CO2 methanation. Under this way, we hope to open new insights to further improve the synergy between the plasma and the packing material, in order to help with the transition towards a sustainable future
Ehrmaier, Andreas [Verfasser], Johannes A. [Akademischer Betreuer] Lercher, Johannes A. [Gutachter] Lercher, and Klaus [Gutachter] Köhler. "Dimerization of 1-Butene on Ni Based Solid Catalysts / Andreas Ehrmaier ; Gutachter: Johannes A. Lercher, Klaus Köhler ; Betreuer: Johannes A. Lercher." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1191897273/34.
Full textArapova, Marina. "Synthesis and properties of the Ni-based catalysts for the valorization of ethanol and glycerol via steam reforming reaction for hydrogen production." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF031/document.
Full textThe three catalytic families based on Ni-containing perovskites: massive [LnFe1-x-yNiyMxO3-δ] (Ln=La, Pr; B=Co, Mn, Ru), supported [mLnNi0.9Ru0.1О3/nMg-γ-Al2O3] (Ln = La, Pr) and structured [mLaNi0.9Ru0.1О3/nMg-γ-Al2O3/structured foams] were synthesized, characterized and tested in the reactions of the ethanol and glycerol steam reforming. The effects of the chemical composition and synthesis method on the structural and textural properties, as well as on reducibility of initial samples were evaluated. The preferred use of Pr, Ni and Ru in the catalyst composition was shown for all families. The essential role of the effective γ-Al2O3 support modification with the ≥10 % wt. of Mg introduced by wetness impregnation for the supported catalyst was also proved. Catalysts of the optimal composition providing a high activity in steam reforming of both ethanol and glycerol at T= 650 °С were found: the best massive catalyst based on the PrFe0.6Ni0.3Ru0.1O3 precursor provides high activity for at least 7 hours, which is explained by the ease of their reduction and the oxidation-reduction properties of the praseodymium oxide formed. Supported 10-20% PrNi0.9Ru0.1O3/10-15%Mg-γ-Al2O3 provide the greatest yield of hydrogen (~ 90%) and stability for ~ 20 hours. Structured catalyst based on the metal Ni-Al platelet provides the yield of hydrogen 80-87% in oxy-steam and steam reforming of ethanol in the concentrated mixtures (ethanol concentration of 30%) in a pilot reactor for 40 hours. The results obtained make these structured catalytic systems very promising to use in electrochemical generators based on fuel cells with the use of inexpensive renewable resource – bio-oil
Burger, Thomas [Verfasser], Kai-Olaf Martin [Akademischer Betreuer] Hinrichsen, Luca [Gutachter] Lietti, Kai-Olaf Martin [Gutachter] Hinrichsen, and Hartmut [Gutachter] Spliethoff. "COx Methanation over Ni-Al-Based Catalysts: Development of CO2 Methanation Catalysts and Kinetic Modeling / Thomas Burger ; Gutachter: Luca Lietti, Kai-Olaf Martin Hinrichsen, Hartmut Spliethoff ; Betreuer: Kai-Olaf Martin Hinrichsen." München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/1237815754/34.
Full textBednarczuk, Lukasz. "Ni-based catalysts for H2 production from ethanol steam reforming: Effect of the support and use of CO2 as regenerating agent and reactant." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/400828.
Full textEn este trabajo se han estudiado catalizadores de níquel soportado para la producción de hidrógeno a partir del reformado subestequiométrico de etanol con vapor. En el mismo se analiza el efecto de la introducción de CO2 como reactivo, realizando un reformado asistido con CO2 en condiciones subestequiometricas de agua/etanol. El objetivo principal del estudio fue relacionar el comportamiento catalítico de los catalizadores con las propiedades físico-químicas de los soportes usados. Además, se hizo énfasis en la aplicación del dióxido de carbono como agente regenerador de los catalizadores con el fin de reducir la presencia de depósitos carbonosos, que es el problema más común de los catalizadores de níquel. Atendiendo a los objetivos mencionados, se preparó y caracterizó una serie de catalizadores de níquel soportado sobre óxidos simples (MgO, Al2O3, Y2O3, La2O3 y ZrO2), y sobre sistemas binarios (ZrO2-Y2O3, ZrO2-La2O3) y ternarios (ZrO2-Y2O3-La2O3), con diversas composiciones. Para los catalizadores preparados se determinó las propiedades fisicoquímicas de superficie, como el área BET expuesta (fisisorción de N2), la densidad y fuerza de los centros básicos (TPD-CO2, calorimetría de adsorción de CO2) y la composición atómica (XPS). Se determinó las diferentes fases cristalinas presentes (XRD) y su reducibilidad (H2-TPR). El comportamiento catalítico de todos los catalizadores se estudió en condiciones de reformado subestequiométrico de etanol con vapor (etanol/agua = 1.0/1.6, ratio molar), a 600 °C. Adicionalmente, con los catalizadores soportados sobre óxidos simples se hicieron ensayos bajo condiciones de reformado subestequiométrico de etanol con vapor y asistido con CO2 (etanol/CO2/agua = 1.0/1.6/1.6, ratio molar). Todos los catalizadores preparados resultaron activos bajo las condiciones de reacción; el producto principal fue H2. Se obtuvo también CO, CH4, C2H4, CO2 y acetaldehído, en diferentes proporciones en función del catalizador y las condiciones de reacción. Los catalizadores usados fueron caracterizados mediante XRD, XPS, espectroscopias Raman e infrarroja y experimentos de oxidación a temperatura programada (TPO-MS), determinando la cantidad y las características de los depósitos carbonosos formados bajo las condiciones de reacción. El efecto en el comportamiento catalítico de la introducción de CO2 con reactivo se ha podido relacionar con las características básicas de los catalizadores. La aplicación de CO2 como agente de reactivación resultó efectiva en la disminución de la cantidad de depósitos carbonosos para los catalizadores Ni/La2O3, Ni/Y2O3, Ni/ZrO2-Y2O3, Ni/ZrO2-La2O3 y Ni/ZrO2-Y2O3-La2O3. El catalizador Ni/12Zr29Y13La mantuvo conversión completa de etanol, y rendimiento hacia H2 de alrededor de 65%, bajo condiciones de reformado subestequiométrico de etanol mediante la aplicación de tratamientos periódicos de regeneración con CO2.
Gumus, Rhoda Habor. "Synthesis gas production from biogas using Ni-based catalyst." Thesis, Loughborough University, 2005. https://dspace.lboro.ac.uk/2134/33769.
Full textLu, Fei. "Electrochemically Induced Urea to Ammonia on Ni Based Catalyst." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1502235953529178.
Full textSanja, Panić. "Fizičko-hemijske i katalitičke osobine ugljeničnih nanocevi sintetisanih metodom katalitičke hemijske depozicije iz gasne faze – korelacija sa osobinama primenjenih katalizatora na bazi prelaznih metala (Fe, Co, Ni)." Phd thesis, Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 2014. http://www.cris.uns.ac.rs/record.jsf?recordId=89673&source=NDLTD&language=en.
Full textThe existance of carbon nanotubes (CNTs), as one of the carbon allotropes, was noted over half century ago. However, the true interest for these nanomaterials appeared at 1991, when they were "redescovered" by Japanese scientist S. Iijima. Since then, due to their unique physico-chemical properties, CNTs begin to attract attention of the scientific community and to gather researchers from different areas within the common field of interest – nanotechnology. The CNTs discovery substantially enabled the high technology development in the fields such as electronics, optics, composite materials, catalysis, environmental protection, etc. Nowdays, the application of nanotubes is increasingly contributing to easier implementation of sustainable development principles in the above mentioned areas. Catalysis is the field of double interest – one of the CNTs synthesis method is catalytical, and the nanotubes can also be used as the support of the new catalyst.The research, which results are shown within this PhD Thesis, includes few different CNTs research fields, starting from the synthesis method development, over the purification and functionalization of the final product, to the application ofnanotubes in two processes of significance for the field of environmental protection.The development of the CNTs catalytic synthesis method was started by the use of vertical quartz tube reactor, in the flow of CO and CH4 as the carbon source, and in the presence of monometallic catalysts based on Fe, Co and Ni at Al2O3 as the support (the first series of catalysts). The results of these preliminary experiments have shown the low activity of these monometallic catalysts, which can be attributed to the inadequate reactor hydrodynamics and selected reaction parameters, as well as the inadequate size of the catalytic particles and the type of their packing in the vertical reactor. Consequently, in order to achieve the higher nanotubes yield, further synthesis experiments were carried out in a horizontal reactor in the flow of C2H4 as the carbon source, and in the presence of the second series of monometallic catalysts with Al2O3 and SiO2 as the supports. The catalysts of the second series have shown satisfactory activity in the CNTs synthesis reaction, and the results of the obtained samples characterization idicate a different influence of the catalyst support on the synthesized CNTs morphology. In order to optimize the reaction parameters, Fe/SiO2 catalyst was chosen as a representative to examine the effect of the CNTs synthesis duration, as well as the volume percentage of C2H4 in the mixture with nitrogen to the CNTs yield and process selectivity. In a further phase of work, the optimization of thereaction parameters led to the introduction of the bimetallic catalysts with the same traditional supports, Al2O3 and SiO2. The highest carbon yield was achieved over Fe, Co based catalysts, regardless of the type of the catalyst support. CNTs synthesized over the above mentioned catalysts were characterized in order to study the effect of the used supports on their physico-chemical properties, and consequently the CNTs tip growth mechanism was proposed. The results of quality examination of the synthesized CNTs showed that the use of SiO2, as a catalyst support, unlike Al2O3, favors the growth of nanotubes of better surface and overall crystalline quality. In view of the diversity of possible CNTs applications, investigation in that direction requires purified CNTs and accordingly the final CNTs products were purified by liquid oxidation method. The results of physico-chemical characterization of the purified CNTs showed that the applied purification method was effective in terms of removing the present catalyst, but on the other hand it had different influence on the structure and quality of the purified samples. As a consequence of CNTs structural changes, as well as their different degree of functionalization, the overall crystalline quality of the purified nanotubes, originating from different catalyst supports, was changed in comparison to the corresponding unpurified samples. Over the past few years, special attention was focused onnanomaterials that can be applied as adsorbents or catalysts for the removal of various pollutants from the environment. This PhD Thesis considers the use of CNTs, as adsorbent, for the removal of insecticide thiamethoxam from water, as well as their use as catalyst support for water denitration reaction. The results of adsorption experiments have shown that the CNTs, pretreated in ccHNO3, represent a good adsorbent for the removal of thiamethoxam from the aqueous solutions. Theselection of the process parameters in order to study the adsorption kinetics and equilibrium, as well as the thermodynamics of the process, was conducted using thefractional factorial design at two levels, 5 1 V 2 . The obtained results showed that the adsorption process is spontaneous and controlled mainly by an internal diffusion of molecules of insecticide in the mesopores of CNTs. The performance of the catalyst with the CNTs as the support were tested in catalytic water denitration reaction, whereby the results showed that the newly formed catalyst is characterized by satisfactory dispersion of Pd-Cu bimetallic nanoparticles which enable the 60% conversion of nitrate ions.
Liu, Xiu. "Production d'hydrogène par reformage à sec de méthane sur catalyseurs au Ni à base de CeO2, CeO2 modifiée avec Zr ou Al, et nano-matériaux Mg-Al-O." Electronic Thesis or Diss., Centrale Lille Institut, 2021. http://www.theses.fr/2021CLIL0032.
Full textThe demand for hydrogen, as a chemical product and as energy is increasing, but the main hydrogen production methods are unsustainable and not environmentally friendly. Hydrogen production from renewable resources (such as biogas mainly composed of CH4 and CO2) is required. Dry reforming of methane (DRM) is a promising method to produce H2 and CO from greenhouse gases. In this thesis, Ni-based CeNiXOY, CeZr0.5NiXOY, CeAl0.5NiXOY, and AlMg2NiXOY catalysts are studied in dry reforming of methane reaction. The effect of reaction temperature, Ni content, in situ H2 pretreatment, mass of catalyst, calcination, and CO2/CH4 ratio are studied. Moreover, long duration stability tests are reported on some chosen samples. The optimized catalytic performance associated with resistance to carbon formation is obtained on partially reduced catalysts. Various physicochemical characterizations are used to analyze the properties of the catalysts, such as XRD, Raman, XPS, and H2-TPR. Some chosen catalysts are also characterized after DRM reaction to analyze their evolution. Finally, an active site involving Ni species in close interactions with other cations is proposed. It is related to a partially reduced catalyst involving anionic vacancies, O2- species, and cations
Coe, Neil J. "A study of Ni based fuel reforming anodes for solid oxide fuel cells." Thesis, Keele University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343244.
Full textJunges, Fernando. "Novel catalyst systems based on Ni(II), Ti(IV), and Cr(III) complexes for oligo-and polymerization of ethylene." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2005. http://hdl.handle.net/10183/6358.
Full textThe complex of Brookhart Ni(α-diimine)Cl2 (1) (α-diimine = 1,4-bis(2,6- diisopropylphenyl)-acenaphthenediimine) has been characterized after impregnation on silica (S1) and MAO-modified silicas (4.0, 8.0 and 23.0 wts.% Al/SiO2 called S2, S3 and S4, respectively). The treatment of these heterogeneous systems with MAO produces some active catalysts for the polymerization of the ethylene. A high catalytic activity has been gotten while using the system supported 1/S3 (196 kg of PE/mol[Ni].h.atm; toluene, Al/Ni = 1000, 30ºC, 60 min and atmospheric pressure of ethylene). The effects of polymerization conditions have been tested with the catalyst supported in S2 and the best catalytic activity has been gotten with solvent hexane, MAO as cocatalyst, molar ratio Al/Ni of 1000 and to the temperature of 30°C (285 kg of PE/mol[Ni].h.atm). When the reaction has been driven according to the in situ methodology, the activity practically doubled and polymers showed some similar properties. Polymers products by the supported catalysts showed the absence of melting fusion, results similar to those gotten with the homogeneous systems by DSC analysis. But then, polymers gotten with the transplanted system present according to the GPC’s curves the polydispersity (MwD) varies between 1.7 and 7.0. A polyethylene blend (BPE/LPE) was prepared using the complex Ni(α-diimine)Cl2 (1) (α-diimine = 1,4-bis(2,6-diisopropylphenyl)-acenaphthenediimine) and {TpMs*}TiCl3 (2) (TpMs* = hydridobis(3-mesitylpyrazol-1-yl)(5-mesitylpyrazol-1-yl)) supported in situ on MAO-modified silica (4.0 wts. -% Al/SiO2, S2). Reactions of polymerization of ethylene have been executed in the toluene in two different temperatures (0 and 30°C), varying the molars fraction of nickel (xNi), and using MAO as external cocatalyst. To all temperatures, the activities show a linear variation tendency with xNi and indicate the absence of the effect synergic between the species of nickel and the titanium. The maximum of activity have been found at 0°C. The melting temperature for the blends of polyethylene produced at 0 °C decrease whereas xNi increases indicating a good compatibility between phases of the polyethylene gotten with the two catalysts. The melting temperature for the blends of polyethylene showed be depend on the order according to which catalysts have been supported on the MAO-modified silica. The initial immobilization of 1 on the support (2/1/S2) product of polymers with a melting temperature (Tm) lower to the one of the polymer gotten when the titanium has been supported inicially (1/2/S2). The observation of polyethylenes gotten with the two systems (2/1/S2 and 1/2/S2) by scanning electron microscopy (SEM) showed the spherical polymer formation showing that the spherical morphology of the support to been reproduced. Are described the synthesis, the characterization and the catalytic properties for the oligomerization of the ethylene of four organometallics compounds of CrIII with ligands ([bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine] chromium (III) chloride (3a), [bis[2-(3,5- dimethyl-l-pyrazolyl)ethyl]benzylamine] chromium (III) chloride (3b), [bis[2-(3,5-dimethyl-lpyrazolyl) ethyl]ether] chromiun(III)chloride (3c), [bis[2-(3-phenyl-lpyrazolyl) ethyl]ether]chromiun(III)chloride (3d)). In relation of the oligomerization, at exception made of the compounds 3a, all complex of the chromium showed be active after activation with MAO and the TOF gotten have one effect differentiated to those formed with CrCl3(thf)3. The coordination of a tridentate ligand on the metallic center doesn't provoke any considerable changes on the formation of the C4 and C6, but the amount of C8 are decrease and the C10 and C12+ have increased. The Polymers produced by the catalyst 3a to 3 and 20 bar of ethylene have, according to analyses by DSC, the temperatures of fusion of 133,8 and 136ºC respectively. It indicates that in the two cases the production of high density polyethylene. The molar mass, gotten by GPC, is 46647 g/mols with MwD = 2,4 (3 bar). The system 3c/MAO showed values of TOF, activity and selectivity to different α-olefins according to the pressure of ethylene uses. Himself that shown a big sensibility to the concentration of ethylene solubilized.
Bidurukontham, Aditya V. "Development of Porous Nickel Electro-Catalysts for Photo-Water Splitting Using Zn, Co, Mn and NH4+ Based Precursors." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1310131764.
Full textSperger, Theresa [Verfasser], Franziska [Akademischer Betreuer] Schönebeck, and Dieter [Akademischer Betreuer] Enders. "Combined experimental and computational studies of ligand-based selectivities in Pd- and Ni-catalysis / Theresa Sperger ; Franziska Schoenebeck, Dieter Enders." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1194184332/34.
Full textClark, Joshua Patrick. "A multinuclear solid state nuclear magnetic resonance investigation of the preparation of Co, Pt and Ni based hydrogenation catalyst systems." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/106443/.
Full textH, Moud Pouya. "Catalytic Conversion of Undesired Organic Compounds to Syngas in Biomass Gasification and Pyrolysis Applications." Doctoral thesis, KTH, Kemiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-213368.
Full textTillförlitlig energiförsörjning är en stor utmaning och avgörande för utvecklingen av det globala samhället. För att ta möta beroendet av fossil råvara och de negativa effekter som detta beroende medför för klimatet finns ett stort behov av en övergång till renare energiråvaror. En attraktiv lösning är att ersätta nuvarande fossil råvara med produkter från biomassa. Förgasning och pyrolys är två lovande teknologier för termokemisk omvandling av biomassa. Kommersialisering av dessa teknologier är inte helt problemfritt. I fallet förgasning så behöver, bl.a. oönskade tyngre kolväten (tjära) hanteras innan den producerade orenade produktgasen kan användas i syntesgastillämpningar. Ett effektivt alternativ för detta är gaskonditionering vid höga temperaturer, baserade på katalytisk ångreformering med en nickelkatalysator. Katalytisk ångreformering är en möjlig teknik för omvandling av bioråvara, producerad från pyrolys av biomassa, till syntesgas. Avhandlingen fokuserar delvis på att beskriva den forskning som utförts för att öka kunskapen kring mekanismer för tjärreformering och effekterna av föroreningar från biomassan på en nickelkatalysator nedströms förgasare. Arbetet bidrar till en bättre förståelse av hur alkali i form av kalium (K) i gasfasen upptas, jämviktas och växelverkar med ytan hos nickelkatalysatorn under fullt realistiska förhållanden. Inledningsvis utvecklades en metod för att möjliggöra kontrollerade studier av den kombinerade effekten av S och K, vilken inkluderar exakt dosering av alkali till en produktgas, eliminering av transienter i katalysatoraktiviteten samt katalysatorkarakterisering. Det mest lovande resultatet är att K både sänker ytans svavelinnehåll och ökar aktiviteten för omvandlingen av metan och tjära. För att ytterligare fördjupa kunskaperna i mekanismerna för tjärnedbrytning utfördes experimentella och teoretiska ytstudier på en enkristallnickelyta med naftalen som modellförening. Resultat avseende naftalenadsorption, dehydrogenering av naftalen och kolpassivering av nickelytan diskuteras. Därutöver så beskriver avhandlingen den forskning som utförts inom förkonditionering av pyrolysgas med en järnkatalysator för varsam deoxygenering av biooljan och vätgasproduktion. Detta utfördes vid en småskalig industriell anläggning. De experimentella studierna visar att den undersökta järnkatalysatorn resulterar i en vätgasberikad gas och att den är en potentiell kandidat för tillämpning i ett förkonditioneringssteg.
QC 20170830
Melo, Jarbas Almeida de. "Catalisadores a base de Cu, Ni e Mg suportados em Al2O3 aplicados à gaseificação de etanol em meio contendo água em condições supercríticas." Universidade Federal de Goiás, 2018. http://repositorio.bc.ufg.br/tede/handle/tede/8981.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-10-16T10:13:44Z (GMT) No. of bitstreams: 2 Dissertação - Jarbas Almeida de Melo - 2018.pdf: 7287109 bytes, checksum: 8e33ba1a3ef2d679e03ecdb4e368b53c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-10-16T10:13:44Z (GMT). No. of bitstreams: 2 Dissertação - Jarbas Almeida de Melo - 2018.pdf: 7287109 bytes, checksum: 8e33ba1a3ef2d679e03ecdb4e368b53c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-09-28
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work the synthesis of catalysts was carried out with the objective of H2 production from gasification of ethanol in medium containing water under supercritical conditions. Based on reports from the literature, Cu, Ni and Mg were selected as components for the active phase, alumina (Al2O3) as catalysts support. The catalysts were prepared from aqueous solutions of nitrate salts precursors of Cu, Ni and Mg. The catalysts were characterized by X-ray fluorescence (FRX), scanning electron microscopy, thermogravimetric and thermal differential analysis (TG/ATD), X-ray diffraction (DRX) and textural analysis by N2 adsorption / desorption isotherms at -196 ° C. The TG/ATD analysis indicated that the calcination of the catalytic precursors was sufficient for the removal of water and decomposition of the nitrates of the metal salts precursors of the active phase. In the FRX analysis, the increase in the concentration of the metals in relation to the nominal values after the synthesis of the catalysts was characterized, with an increase of 20 to 40% depending on the metal due to the loss of water from the alumina support. The FRX analysis of the catalysts used in the catalytic tests shows that there was no significant leaching during the gasification process. DRX analysis have characteristic results that the metals are in amorphous form or dispersed in the form of small crystallites. Textural analysis of N2 adsorption / desorption isotherms indicated a reduction of approximately 60% in the specific surface area between the alumina and the calcined alumina and the specific area values between the alumina and the metal catalysts were kept close. The catalytic tests were performed at a pressure of 25 MPa and at temperatures of 400 to 650 ° C. A 10/1 molar water / ethanol solution was fed. In the catalytic tests H2, CH4, CO, CO2, C2H4, C2H6, C2H4O were obtained. The highest ethanol conversions were obtained at the temperature of 650 ° C for the catalysts NiO/Al2O3 and NiO-MgO/Al2O3, both 81%. The highest yield was 0.41 mol H2 / mol ethanol fed to the NiO / Al2O3 catalyst, at a temperature of 600 ° C. The highest selectivity at the temperature of 600 ° C was 39%, obtained by the NiO/Al2O3 catalyst.
Neste trabalho foi realizada a síntese de catalisadores com o objetivo da produção de H2 a partir da gaseificação de etanol em meio contendo água em condições supercríticas. A partir de relatos da literatura, foram selecionados Cu, Ni e Mg como componentes para a fase ativa e a alumina (Al2O3) como suporte dos catalisadores. Os catalisadores foram preparados a partir de soluções aquosas de sais de nitrato precursores de Cu, Ni e Mg. Os catalisadores foram caracterizados por fluorescência de raios X (FRX), microscopia eletrônica de varredura (MEV), análises termogravimétrica e térmica diferencial simultânea (TG/ATD), difração de raios X (DRX) e análise textural por isotermas de adsorção/dessorção de N2 a -196°C. As análises de TG/ATD indicaram que a calcinação dos precursores catalíticos foi suficiente para a remoção da água e decomposição dos nitratos dos sais metálicos precursores da fase ativa. Nas análises de FRX ficou caracterizado o aumento da concentração dos metais em relação aos valores nominais, após a síntese dos catalisadores, com acréscimo de 20 a 40 % dependendo do metal, devido à perda de água do suporte de alumina. As análises FRX dos catalisadores utiilzados nos testes catalíticos mostraram que não houve lixiviação considerável durante o processo de gaseificação. Análises de DRX apresentaram resultados característicos de que os metais se encontram na forma amorfa ou dispersos na forma de pequenos cristalitos. Os resultados foram coerentes com as imagens de microscopia eletrônica de varredura. Análises textural por isotermas de adsorção/dessorção de N2 indicaram uma redução de aproximadamente 60% na área superficial específica entre a alumina e a alumina calcinada e mantiveram-se próximos os valores de área específica entre a alumina e os catalisadores metálicos. Os testes catalíticos foram realizados a uma pressão de 25 MPa e nas temperaturas de 400 a 650 °C. Foi alimentada uma solução de água/etanol na razão de 10/1 molar. Nos testes catalíticos foram obtidos H2, CH4, CO, CO2, C2H4, C2H6, C2H4O. As maiores conversões de etanol foram obtidas na temperatura de 650 °C para os catalisadores de NiO/Al2O3 e NiO-MgO/Al2O3, ambas 81 %. O maior rendimento obtido foi de 0,41 mol H2/mol etanol alimentado para o catalisador de NiO/ Al2O3, na temperatura de 600 °C. A maior seletividade na temperatura de 600 °C foi de 39 %, obtida pelo catalisador de NiO/Al2O3.
Caliman, Cristiano Carrareto. "Estudo da eletro-oxidação de álcoois em catalisadores do tipo PtSnNiTi para aplicação em células a combustível." Universidade Federal do Espírito Santo, 2013. http://repositorio.ufes.br/handle/10/6746.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Electrocatalysts of type C/PtSnNiTi were prepared by thermal decomposition of polymeric precursors. The physico-chemical and electrochemical characterization of the electrocatalysts was performed by different techniques: X-ray diffraction, transmission electron microscopy, cyclic voltammetry and chronoamperometry. The X-ray diffraction results showed that the electrocatalysts comprise mainly Pt metal with face-centered cubic crystal structure and particle sizes ranging from 1.8 to 8.3 nm. In transmission electron microscopy analysis the average particle sizes observed were between 4 and 6 nm. The electrocatalysts were evaluated in the absence and presence of ethanol and glycerol in sulfuric acid medium. All showed activity towards alcohols oxidation. Furthermore, the Pt50Sn20Ni25Ti5 electrocatalyst showed the best results of cyclic voltammetry and chronoamperometry in presence of glycerol and ethanol respectively. The greater potency density obtained in cell tests was 20 mW/cm2 for the composition Pt50Sn20Ni25Ti5. Cyclic voltammetry data obtained in this study indicate that the addition of Ni and Ti in PtSn electrocatalysts increases its electrocatalytic activity toward alcohols oxidation
Eletrocatalisadores do tipo C/PtSnNiTi foram preparados por decomposição térmica dos precursores poliméricos. As caracterizações físico-química e eletroquímica foram feitas por diferentes técnicas: Difração de raios X, Microscopia eletrônica de transmissão, Voltametria cíclica, Cronoamperometria, Teste de célula e Teste de energia de ativação. Os resultados de difração de raios X mostraram que os catalisadores são principalmente compostos por Platina cúbica de face centrada e com tamanhos de partícula variando de 1,8 a 8,3 nm. Nas análises de microscopia eletrônica de transmissão foram observados tamanhos médios de partícula entre 4 e 6 nm. Os eletrocatalisadores foram avaliados na presença e ausência de etanol e glicerol em ácido sulfúrico. Todos mostraram atividade na oxidação dos álcoois. Além disso, a composição Pt50Sn20Ni25Ti5 apresentou os melhores resultados de voltametria cíclica e cronoamperometria na presença de glicerol e etanol. A maior densidade de potência obtida nos testes de célula foi de 20 mW/cm2 para a composição Pt50Sn20Ni25Ti5. De modo geral, os dados de voltametria cíclica obtidos nesse estudo indicam que a adição de Ni e Ti em catalisadores PtSn aumenta a atividade catalítica destes frente a oxidação de álcoois
You, Sheng Mu. "Metal organic frameworks as efficient photosensitizer for TiO₂ nanoarray anode and application to water splitting in PEC cells Fe/Ni Bimetallic organic framework deposited on TiO₂ nanotube array for enhancing higher and stable activity of oxygen evolution reaction Novel nano-architectured water splitting photoanodes based on TiO₂-nanorod mats surface sensitized by ZIF-67 coatings Surface sensitization of TiO₂ nanorod mats by electrodeposition of ZIF-67 for water photo-oxidation Electrochemically capacitive deionization of copper (II) using 3D hierarchically reduced graphene oxide architectures." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASF015.
Full textThe fossil fuel reserves are dwindling and their unrestricted use has generated profound changes in Earth's surface temperature and climate. Storing solar energy in the form of hydrogen produced by dissociation of water is an ideal way to mitigate global warming. Materials from the “metal organic framework” (MOF) family are starting to be used as photo-electrocatalysts, especially for photo-dissociation of water. Their extremely high porosity and their great versatility, both chemical and structural, designate them as potential candidates to facilitate the absorption of solar radiation and catalyze the dissociation of water in photoelectrochemical cells. By controlling the chemical composition and doping of the linker used in the MOF, it is possible to adjust the band gap energy, to favor the functionalization on very varied substrates or even to adjust their resistance to corrosion in various chemical environments. They are therefore materials of great interest for catalysis, electrocatalysis or photo-electro-catalysis. On the other hand, nano-structured TiO₂, for example in the form of nanotube or nanowire mats, sometimes called TiO₂ nanoarray (TNA), is a material very suitable for the construction of photoanodes for the evolution of oxygen in aqueous medium. It has already been extensively studied and described in the literature. During our thesis, we manufactured composite materials made up of MOFs of transition metals (Ni, Co, Fe) deposited on TNA (network of nanotubes or nanowires). For this we used an electrochemical method of electrodeposition (cyclic voltammetry). This allowed us to deposit metallic nanoparticles on TNA with fixed potential - 1.0 V and then transform them by chemical reaction with organic ligands (1,3,5-benzenetricarboxylic acid, BTC, 1,4-benzenedicarboxylic acid, BDC and imidazole, 2MZ) by thermal-thermal route. The materials obtained exhibit significant electrocatalytic activity and excellent photoelectrochemical durability. These composite materials have been successfully used as an active phase in photo-electrodes for the oxygen release reaction (OER)
Tseng, Ya-Chun, and 曾雅君. "Sequential Decarbonylation of Furfural Using Ni-based Catalysts." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/69w92r.
Full text國立臺灣科技大學
化學工程系
106
Abstract Furfural can be obtained from biowaste and can be used as a platform chemical for producing valuable chemicals. The furfural conversion using various metal catalysts indicates that furfural can lead to different useful chemicals economically and competitively. The product distribution can be altered by the type of metal, reaction temperature and hydrogen concentration. Instead of precious metal, the cheap nickel-based catalysts are examined in this study. Our previous study shows that nickel particle size can result in different catalytic activity, product selectivity and C3 can be obtained through sequential decarbonylation of furfural. In this study, we confirm the reaction pathway of sequential decarbonylation to C3 and the effect of hydrogen concentration is examined. The Ni/SiO2 catalysts are inactive without hydrogen while decarbonylation selectivity can be increased significantly with hydrogen concentration decrease. However, the decrease of hydrogen concentration also leads to more serious catalyst deactivation. In order to increase the resistance of coke formation, we have two strategies modifying the Ni catalyst to prevent the coke. Although Ni catalysts with K doping have higher hydrogenation products, Ni/K1-SiO2 shows the higher stability and maintains high C3 selectivity. It might indicate that doping K might block the active site for decarbonylation reaction. Extensive studies regarding doping B in Ni catalyst have been considered. In our case, NiB/SiO2 shows high stability and has high C3 selectivity with high H2 concentration in FFR reaction, but not really promote the stability with lower H2 concentration in FFR reaction. Keywords:Furfural, decarbonylation, Ni catalyst, potassium, boron, C3
Shaikh, Ali Anaam. "Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane." Diss., 2016. http://hdl.handle.net/10754/621931.
Full textLin, Ya-Chi, and 林雅淇. "Olefins Polymerization based on Ni(Ⅱ)Catalysts with Amino-Pyridine Ligands." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/30242568600729234899.
Full text國立臺灣大學
化學研究所
90
A family of catalysts based on the nickel (Ⅱ) complexes bearing new bidentate amino-pyridine ligands for ethylene polymerization is revealed. The metal complexes are prepared by ligand substitution reactions of Ni(DME)Br2 (DME = 1,2-dimethoxyethane) with the synthesized amino-pyridine. The bidentate ligands and metal can constitute the five- and six-membered metallocycles. The single-crystal X-ray crystallographic analysis shows that the coordination sphere around the metal canter is disposed in tetrahedral, trigonal bipyramidal or square planar configuration. The angles of N-Ni-N’ are 81±2° in the five-membered metallocycles; and are 98±0.5° in the six-membered metallocycles. The SQUID data confirm that the electronic configuration of the nickel complexes has two unpaired electrons. The title catalysts activated by methylaluminoxane (MAO) are found to efficiently convert ethylene to polyethylene (PE) with the TOF of 103~105 g/mol Ni.h. The complexes with five-membered metallocycles exhibit better activity than those with six-membered metallocycles. The yielded PE are of relatively low molecular weight (1000~3000), low branch number (<100) and high crystallinity, comparing with the PE products obtained in use of the nickel catalysts bearing other amine-imine bidentate ligands in this lab. The electronic and steric effects of the amino-pyridine ligands substantially influence the catalytic activity of polymerization. In a case using the catalyst with the ketamine pyridine ligand, the activity is one order of magnitude greater than the analogous catalyst with the aldamine pyridine ligand. The reaction conditions for polymerization are also crucial. The reaction activity depends on the amount of MAO used, and is proportional to the ethylene pressure in the region of 14 to 21 bar. The temperature effect is examined in the range of 0~70 ℃, and it is found that the activity is optimized at 35 ℃with TOF = 843 kg of polymer/mol of cat.h.
Wang, Shih-Kai, and 王世凱. "Homopolymerization and copolymerization of tert-butyl methacylate and norbornene with Ni-based/MAO catalysts." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/81076786183620472488.
Full text國立交通大學
應用化學系
89
The homopolymerization and copolymerization of tert-butyl methacylate (tBMA) and norbornene (NB) with nickel (Ⅱ) acetylacetonate [Ni(acac)2] in combination with methylaluminoxane (MAO) were systematically investigated in this study. This catalytic system shows a higher activity towards homopolymerization of both norbornene and tert-butyl methacrylate. For random copolymerization, an increase in the initial tert-butyl methacrylate leads to gradual loss of activity relative to nobornene homopolymerization. On the other hand, a drastic loss of activity, relative to tert-butyl methacrylate homopolymerization, was found for very low feed contents of norbornene. These results are qualitatively interpreted using the trigger coordination mechanism proposed by Ystenes. From the NMR analysis, the fully saturated structure of polynorbornene indicates that these two monomers polymerize by an ethylenc type addition reaction. Determination of reactivity ratios indicates a much higher reactivity for norbornene than tBMA (rNB=5.4 and rtBMA=0.0196), which is interpreted by the corordination mechanism. From the thermal analyses of DSC and TGA, these acrylate-norbornene copolymers exhibit glass transition temperature (Tg) ranging from 100℃ to 250℃ depending on compositions and have an anhydrate bond formating from 200℃ to 250℃. Finally, these copolymers are transparent as amorphous with higher polarity relative to other cyclo-olefin copolymer and more solvable materials in organic solvent.
Chen, Chan-Zen, and 陳長仁. "A Comparative Study on Methane Reforming of Carbon Dioxide over Some Ni-based Catalysts." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/59123644744671448472.
Full text國立成功大學
化學工程學系碩博士班
95
The process of carbon dioxide reforming of methane (CH4 + CO2 → 2CO + 2H2), which consumes two greenhouse gases and produces synthesis gas, is worth developing. In this study, the catalysts with high catalytic activity for this reaction were investigated. The research included two parts. In the first part, the influencing factors for preparing the perovskite-type catalysts were investigated and the proper preparation parameters were determined. The activity tests of several kinds of catalysts were carried out in the second part, and the catalyst with the best performance and coke resistance was picked up. In addition, the physical and chemical properties of catalysts were characterized to find their effect on the catalytic activity. When perovskite-type catalysts were prepared by the sol-gel method, the main affecting factors are ratio of citric acid to metal ion, ratio of citric acid to ethylene glycol, pH value calcination temperature and heating rate. In this study, each factor was changed individually to determine its effect on catalyst performance. SEM and XRD were used to characterize the catalysts. The results show that when the ratio of citric acid to metal ion is between 3 and 4 and that of citric acid to ethylene glycol is 1 in the preparation of catalyst precursor, the catalyst particles are smaller and more uniform. For calcination process, the temperature should be raised to 700℃ with heating rate of 10℃/min and held for 2 hours to get the smallest (<100 nm) and most completely crystallized catalyst particles. The result of activity tests reveal that the optimal Ni loading in Ce0.75Zr0.25O2 is 5 wt%. Among several noble metals tested, Ru with Ru/Ni=0.1 added to this catalyst, the highest activity could be obtained. The activity tests of hydrotalcite-like catalyst, Ni-Mg-Al, with different metal ratios show that the activity was the highest when the ratio of Ni/Mg/Al equals to 1/5/2. These two catalysts can produce CO and H2 at 400℃. Their conversions remained constant during an on-stream of 30 hours at 600℃. This fact suggests that these catalysts can impede carbon deposition and have excellent durability.
Cheng-HanLin and 林成翰. "One-step Hydro-conversion of Palm Oil into Renewable Jet Fuels over Ni-based Catalysts." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/9pxsuv.
Full textLiu, Ming-Chung, and 劉明宗. "Preparation and Characterization of Sputtered Ni and Co Based Catalysts for Thermal CVD Grown Carbon Nanotubes." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/52685504061340501720.
Full text國立臺灣海洋大學
材料工程研究所
94
Abstract In this study, we present a new effective method of synthesizing carbon nanotubes (CNTs) using metallic catalysts synthesized by r.f. sputtering technique. Base on the widely used immiscible principle, Co and Cu (Co-Cu), Ni and C (Ni-C) as well as Co, Cu and C (Co-Cu-C) were chosen as the sputtering targets to form catalyst films on the silicon substrate, followed by Thermal CVD for growing CNTs. The results of AES, XPS and SIMS showed that the catalyst films have Cu, Co and Ni elements and minor contaminants. The precise compositions of these films were also revealed by SIMS measurements. Combined with XRD results, we demonstrated that the insoluble elements were supersaturated in Ni and Cu solid solutions. SEM results proved that the crystallite sizes of the films were approximately 20-30 nm, and the diameters of CNTs were about 50-100 nm. Raman spectra of CNTs showed two typical peaks of D and G bands, respectively, which suggested that the CNTs grown on the films are multi-wall CNTs with lattice distortion and other defects. TEM results showed that the diameter of multi-wall carbon nanotubes were approximately 25-50 nm. TEM results also suggest that metallic particles can be observed on the top of CNTs, which agreed well with the top growth mechanism. Additionally, the films were thermally annealed at different elevated temperatures for various times in order to gain different local particle sizes, which were found closely related to subsequent CNT diameters grown on these catalyst films. In a conclusion, CNTs can be readily grown on the as-sputtered metallic catalyst films and the diameter of CNTs could be controlled by the crystallite sizes of the films through the top growth mechanism.
Liu, Hsin Yi, and 劉欣宜. "Hydrogen production by low temperature partial oxidation of butane over Ni-based catalysts modified by platinum." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/20928666575881686418.
Full textChiang, Chao-Lung, and 江昭龍. "Preparation, Characterization, and CO2 Conversion Efficiencies of Ni-Ga and Cu-based Catalysts for Methanol and Dimethyl Ether Formations." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/mstzzr.
Full text元智大學
化學工程與材料科學學系
106
In this study, catalytic nickel-gallium (Ni5Ga3) and Cu-based catalysts (CuO-ZnO-Al2O3, CZA) have been prepared with co-precipitation methods. Supported nickel-gallium and Cu-based catalysts have also been obtained by ultrasonic-stirring with supports including silica gel (SiO2), protonated Y-type zeolite (HYZ) and protonated Beta-type zeolite (HBZ) in a slurry form. Crystal structures and morphologies of catalysts have been investigated and observed by X-ray diffraction (XRD) and field-emission scanning electronic microscopy (FE-SEM), confirming that nickel-gallium and Cu-based catalysts were Ni5Ga3 and CuO-ZnO-Al2O3 structure. FE-SEM microphotos have shown that supports could maintain the particle size being uniform in the durations of MeOH and DME formations. X-ray photon spectroscopy (XPS) spectra indicated that the effective component in Ni-Ga and Cu-based catalysts were respectively gallium and copper species. Oxidation state and bond distances of metal and its neighbour atoms were analyzed by X-ray absorption near-edge structure (XANES)/Extended X-ray absorption fine structure (EXAFS). It displayed that the oxidation states of gallium were Ga(0) and Ga(III) before and after MeOH formation, but nickel remained Ni(0). For Cu-based catalyst, the oxidation states of copper and zinc were Cu(II) and Zn(II), respectively. The inverse relationship of bond distances of metal (Ni5Ga3: Ni and Ga; CZA: Cu and Zn) and its neighbour atoms during the reaction were exhibited in EXAFS excluding Ni5Ga3/SiO2, CZA/HYZ, and CZA/HBZ. It demonstrated that structure, morphology, chemical composition, and fine structure of catalyst could be remained during MeOH/DME formation by dispersing nickel-gallium and Cu-based catalysts onto supports. In addition, the produced species sorts and their concentrations have been respectively analyzed using a dual fixed-bed catalyst-filled column reactor with an online FTIR (Fourier transformed infrared spectrum) and GC (gas chromatograph) spectra at the terminal to obtain the conversion of feedstock and the selectivity/yield of products. Online FTIR and GC spectra show that catalytic performances of catalysts at a constant pressure and variable temperatures (P=50 bar, T=150, 250, and 350 oC) of Ni-Ga and Cu-based catalysts have been enhanced after nickel-gallium and Cu-based catalyst dispersed onto supports. The highest MeOH yield could reach to 62.1 (150 oC), 84.7 (250 oC), and 82.5% (350 oC) by using Ni5Ga3/SiO2. The highest DME yield of CZA was 60.2%; it could be raised to 71.5% (CZA/HYZ) by loading onto HYZ, but lowered to 31.8% by supporting onto HBZ (CZA/HBZ). Rate equilibrium constants of MeOH formation were 0.150 (150oC), 0.473 (250 oC), and 0.477 h-1 (350 oC) that were much higher than theoretical values of 4.67×10-4 (150 oC), 2.22×10-5 (250 oC), and 2.47×10-6 (350 oC) h-1 by using Ni5Ga3 catalyst. Activation energies of MeOH formation using Ni5Ga3 and Ni5Ga3/SiO2 were 3.21 and 2.72 kJ/mol, respectively. In terms of DME formation, the highest rate equilibrium constant using CZA was 1.65×103 L/mol-h. It could be raised to 2.26×103 L/mol-h L/mol-h after supporting onto HYZ (CZA/HYZ), but lowered to 0.70×103 L/mol-h using CZA/HBZ. Activation energies of DME formation using CZA, CZA/HBZ, and CZA/HYZ were respectively 2.04, 2.26, and 1.16 kJ/mol. In addition, Gibbs energies of MeOH formation were 6.67 (150 oC), 3.26 (250 oC), and 3.83 (350 oC) kJ/mol that were much lower than theoretical values including 26.97 (150 oC), 46.59 (250 oC), and 66.87 (350oC) kJ/mol. The Gibbs energies of DME formation by using CZA, CZA/HBZ, and CZA/HYZ were respectively -40.07, -40.00, and -40.67 kJ/mol that were much lower than theoretical values of -12.64, -9.96, and -7.28 kJ/mol. Eventually, the cost assessment for a 10-TPD (ton per day) off-gas utility process of a petrochemical refinery plant showed that the daily income was USD$ 5,002,359/d with 3.49 years of payback.
Guan, Shih-Hau, and 管仕豪. "Studies of Carbon-Carbon Bond Formation Reactions Based on Ni(II) and Pd(II) Catalysts Bearing Nitrogen-Containing Hetero-functional Bidentate Ligands." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/64240078354258185606.
Full text國立臺灣大學
化學研究所
95
In this thesis, carbon-carbon bond formations are studied through three kinds of reactions: styrene polymerization, cross-couplings and nucleophilic additions. A new series of Ni(II) complexes [(N,N'')NiBr2] bearing bidentate amino-oxazoline ligands have been synthesized and applied for polymerization of styrene. With cocatalyst, MAO, these Ni(II) complexes 4 are highly efficient catalysts for styrene polymerization with activities up to ~107 g / mol [Ni] × h under optimized conditions, which possess the best performance among the catalytic Ni systems now. Effects of the structures of catalysts and the reaction parameters on the activities and characteristic properties for the polymers have been discussed here. From the 13C NMR data, the degree of stereoregularity of the synthesized polystyrene could be moderately controlled by the chiral center in the oxazoline ring although atactic polymers were generally obtained by these Ni(II) catalysts. The neutral Pd(II) complexes [(N,N'')PdCH3Cl] 5 and the cationic complexes [(N,N'')PdCH3L]+ 7 were prepared for studying the mechanism for polymerization. For the neutral Pd complexes, their coordination chemistry, dynamic behavior, geometric isomerization, and reactivity toward alkynes have been studied herein. Furthermore, reactions of cationic Pd complexes with styrene, which led to the η3-π-benzyl Pd(II) complexes, made the possible mechanism of the polymerization of styrene for the Ni(II) system. Neutral Pd(II) complexes were synthesized and involved nitrogen-containing ligands, such as mono-oxazolines, amino-oxazolines and pyridyl-pyrazoles. Among them, the chloromethylpalladium(II) complex with bidentate pyridyl-pyrazole ligands exhibited excellent activities toward Heck coupling reactions with high TONs up to 95,000,000, comparable to the palladacycle systems. In addition, the pyridyl-azolate ligands are good candidates for catalytic Suzuki-Miyaura cross-coupling reactions. In the presence of Pd(OAc)2, KF as base, and such ligands in EtOH, the couplings of aryl bromides with phenylboronic acids could proceed with high conversions at room temperature in the air. Under the same conditions, it could slowly couple aryl chloride with phenylboronic acids, which is rare for Pd catalysts with bidentate nitrogen donor ligands. Finally, we synthesized a series of cationic allylpalladium(II) complexes bearing asymmetric amino-oxazoline ligands. The isomer interconversion is demonstrated by NOESY spectra to show a syn-syn, anti-anti exchange. Nucleophilic attacks to the Pd complexes would result in the linear and branched products. The regioselectivity is strongly dependent on the steric/electronic properties of the nucleophiles and the polarity of the used solvents.
Guan, Shih-Hau. "Studies of Carbon-Carbon Bond Formation Reactions Based on Ni(II) and Pd(II) Catalysts Bearing Nitrogen-Containing Hetero-functional Bidentate Ligands." 2007. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-1108200716185900.
Full textWierenga, TS. "N-heterocyclic carbene-based Pd and Ni complexes and their applications to the activation of alkylnitriles." Thesis, 2019. https://eprints.utas.edu.au/31480/1/Wierenga_whole_thesis.pdf.
Full textChen, Hsin-Hsien, and 陳幸賢. "SiC Based Catalyst Supports Fabricated from Luffa Cylindrica and Their Application in Ni-catalyzed CO Oxidation." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/49228707470187062594.
Full text大同大學
材料工程學系(所)
96
The purpose of this study is to compare the effects of three supports for Ni catalyst: SiC prepared from Luffa Cylindrica,γ-Al2O3 prepared by the sol-gel method and SiC coated with γ-Al2O3. The supports were dripped with different concentration Ni(NO3)2 by incipient wetness impregnation method to produce supported Ni catalysts. The Luffa Cylindrica was first transformed into charcoal by carbonization in N2 atmosphere. Proper proportion of Si was then reacted with porous charcoal to form porous SiC with the structure of Luffa Cylindrica. The SiC was immersed in Al(OH)3 prepared by sol-gol method, and then dried and calcined. SiC support withγ-Al2O3 coating was formed. Supported Ni catalysts was prepared by dripping Ni(NO3)2 solution of different concentration into the supports (impregnation method). After dried, calcined and reduced in H2/N2 atmosphere, supported Ni catalysts were obtained. The results pointed out that the support of SiC with 15wt% Ni had Ni well dispersed. Ni particles begun to agglomerate when Ni was 30 wt%. The agglomeration was significant when Ni was 40 wt%. The agglomeration reduced the activity of Ni. Ni catalysts supported onγAl2O3-SiC or γAl2O3 did not agglomerate, and the catalysts activity increased monotonically with Ni content. After SiC was coated with γ-Al2O3, specific surface area increased ( from 16 m2/g to 131 m2/g), and partial large pores shrank, and some small pores (~1 μm) were closed. This resulted in decreasing Ni content into supports. Thus, when comparing the different supports with 30 wt% Ni, and Ni/ SiC catalyst activity was better than Ni/γAl2O3-SiC. Comparing CO oxidation reaction activity of different supports with different Ni content, it showed that catalyst Ni/γAl2O3- SiC with 60 wt% Ni had the highest catalytic activity( T50 = 265 ℃). For Ni/SiC,the highest activity occurred when Ni was 30%( T50 =272 ℃ ).