Academic literature on the topic 'Next-to-leading order (NLO)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Next-to-leading order (NLO).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Next-to-leading order (NLO)"
CONTOGOURIS, A. P., and Z. MEREBASHVILI. "APPROXIMATE NEXT-TO-LEADING ORDER AND NEXT-TO-NEXT-TO-LEADING ORDER CORRECTIONS." International Journal of Modern Physics A 18, no. 06 (March 10, 2003): 957–66. http://dx.doi.org/10.1142/s0217751x03013983.
Full textCHIRILLI, GIOVANNI ANTONIO. "SMALL-x EVOLUTION IN THE NEXT-TO-LEADING ORDER." Modern Physics Letters A 24, no. 35n37 (December 7, 2009): 3052–61. http://dx.doi.org/10.1142/s0217732309001261.
Full textBALITSKY, IAN. "PHOTON IMPACT FACTOR AND kT FACTORIZATION IN THE NEXT-TO-LEADING ORDER." International Journal of Modern Physics: Conference Series 20 (January 2012): 187–99. http://dx.doi.org/10.1142/s2010194512009233.
Full textTriantafyllopoulos, D. N. "Forward particle production in proton-nucleus collisions at next-to-leading order." EPJ Web of Conferences 192 (2018): 00014. http://dx.doi.org/10.1051/epjconf/201819200014.
Full textCarloni Calame, Carlo M., Mauro Chiesa, Guido Montagna, Oreste Nicrosini, and Fulvio Piccinini. "Muon-electron scattering at next-to-leading order accuracy." EPJ Web of Conferences 212 (2019): 05002. http://dx.doi.org/10.1051/epjconf/201921205002.
Full textFIGY, TERRANCE. "NEXT-TO-LEADING ORDER QCD CORRECTIONS TO LIGHT HIGGS PAIR PRODUCTION VIA VECTOR BOSON FUSION." Modern Physics Letters A 23, no. 24 (August 10, 2008): 1961–73. http://dx.doi.org/10.1142/s0217732308028181.
Full textBUTENSCHOEN, MATHIAS, and BERND A. KNIEHL. "NEXT-TO-LEADING ORDER TESTS OF NON-RELATIVISTIC-QCD FACTORIZATION WITH J/ψ YIELD AND POLARIZATION." Modern Physics Letters A 28, no. 09 (March 21, 2013): 1350027. http://dx.doi.org/10.1142/s0217732313500272.
Full textBrandenburg, A., S. Dittmaier, P. Uwer, and S. Weinzierl. "Top quark pair + jet production at next-to-leading order: NLO QCD corrections to." Nuclear Physics B - Proceedings Supplements 135 (October 2004): 71–75. http://dx.doi.org/10.1016/j.nuclphysbps.2004.09.038.
Full textOgul, Hasan, Kamuran Dilsiz, Emrah Tiras, Ping Tan, Yasar Onel, and Jane Nachtman. "High Order QCD Predictions for Inclusive Production ofWBosons inppCollisions ats=13 TeV." Advances in High Energy Physics 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/7865689.
Full textGnech, Alex, Jordy de Vries, Sachin Shain, and Michele Viviani. "Electric dipole moment of light nuclei in chiral effective field theory." EPJ Web of Conferences 258 (2022): 06007. http://dx.doi.org/10.1051/epjconf/202225806007.
Full textDissertations / Theses on the topic "Next-to-leading order (NLO)"
RE, EMANUELE. "Next - to - leading order qcd corrections to shower Monte Carlo event generators: single vector- boson and single- top hadroproduction." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7455.
Full textBai, Dongyun. "Study of additional radiation in the initial-state-radiation processes e⁺e⁻ → µ⁺µ⁻γ and e⁺e⁻ → π⁺π⁻γ in the BABAR experiment." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASP087.
Full textThis thesis presents a dedicated study of additional radiation in e⁺e⁻ → µ⁺µ⁻γ and e⁺e⁻ → π⁺π⁻γ initial-state-radiation (ISR) events. This study is based on the data collected by the BABAR detector, corresponding to an integrated luminosity of 424.2 fb⁻¹ and 43.9 fb⁻¹ at and below the Y(4S) resonance, respectively. Two-body ISR events are selected by requiring the ISR photon energy in the center-of-mass frame E^*_ γISR be greater than 4 GeV and the laboratory polar angle in the range 0.35-2.45 rad, and exactly two opposite charged tracks, each with transverse momentum p_T > 0,1 GeV and within the angular range 0.40-2.45 rad. In the events with two ISR photon candidates, the ISR photon is chosen to be that with the higher E^*_ γISR. Kinematic fits of next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) are performed to probe the radiation of one or two photons respectively in the initial and final states in addition to the ISR photon. Several boosted decision trees (BDTs) based on the multivariate technique are performed to (1) determine the normalization factors for simulated multihadron backgrounds from qqbar and 3π processes, (2) separate dimuon and dipion signals from backgrounds in a two-dimensional χ² plane of kinematic fits with a small-or large-angle additional photon, and (3) suppress background contributions in dipion samples with two additional photons. New results are presented for processes at NLO following the previous BABAR analysis, comparing with predictions from PHOKHARA and AFKQED Monte Carlo (MC) generators. The comparison reveals discrepancies in the one-photon rates and the PHOKHARA generator. The observed disagreement has a negligible effect on the BABAR measurement of the dipion cross section, but it could affect other ISR-based measurements more significantly. To further investigate the results from the NLO analysis, a 0C analysis which stands for zero constraint kinematic reconstruction of the full muon sample is performed and validates the observed disagreement. Substantial NNLO contributions are studied and quantified in both dimuon and dipion processes. Implications of these results for other experiments are briefly discussed and compared
ALIOLI, SIMONE. "Matching next-to-leading-order QCD calculations with shower Monte Carlo Simulations: single vector boson and higgs boson productions in powheg." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7381.
Full textGAVARDI, ALESSANDRO. "Next-to-next-to-leading order predictions for diboson production in hadronic scattering combined with parton showers." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402370.
Full textIn this work, I present the implementations of two processes of electroweak (EW) boson pair production from hadronic scattering within two different Monte Carlo event generators at next-to-next-to-leading order (NNLO) in quantum chromodynamics (QCD) combined with parton showers (PS). In the first part of the work, I discuss the implementation of the process of production of two same-flavor opposite-charge pairs of massless leptons from proton-proton scattering within the Geneva Monte Carlo event generator. After briefly introducing the Geneva method, I provide a detailed description of two of its newly-implemented features. After passing the events through the Pythia8 parton shower, I finally show several distributions of phenomenological interest and compare them with the data from the ATLAS and CMS experiments at the Large Hadron Collider (LHC). The Geneva event generator provides a framework for matching the NNLO calculation with the next-to-next-to-leading logarithmic prime (NNLL') resummation of the zero-jettiness and next-to-leading logarithmic (NLL) resummation of the one-jettiness. Since the contribution from the resummation is only differential in the N-jettiness parameter, it can be used for generating events only after providing its dependence on the full radiation phase space. The functions used for this purpose are called splitting functions and must be normalized so as not to spoil the accuracy of the resummation. In this work, I present a way of normalizing them on the fly, which provides better stability to the Monte Carlo integration. However, such a method requires the analytic computation of several phase-space boundaries, which depend on the mappings used for projecting the configurations with N+1 final-state partons onto those with N final-state partons. After describing all the mappings currently available in Geneva, I present a detailed calculation of the normalization of the corresponding splitting functions. I then discuss the next-to-leading order (NLO) subtraction of the infrared QCD singularities for any process of production of a color singlet. Since Geneva requires the on-the-fly Monte Carlo integration of the subtracted real amplitudes, I show a way to optimize the efficiency of the integration, which can be particularly useful for processes where the evaluation of the real matrix elements is computationally demanding. In the second part of the work, I discuss the implementation of the process of production of a photon pair from a proton-proton scattering within the Powheg Box + MiNNLOPS Monte Carlo event generator. Such a process requires a dedicated treatment since it is plagued by quantum electrodynamics (QED) divergences in the limit where any photons become collinear to a quark. After briefly introducing the Powheg Box event generator and the MiNNLOPS method, I present the dedicated tools devised for this calculation. I begin by describing a generic way to deal with any process with a divergent Born cross section in the Powheg Box event generator without applying any generation-level cuts. I then present a mapping that prevents QED-finite configurations with one final-state parton from being projected to singular configurations with no final-state partons. Finally, I discuss several modifications to the original version of the MiNNLOPS method aimed at reducing the size of spurious contributions beyond NNLO. After passing the events through the Pythia8 parton shower, I conclude by showing several distributions of phenomenological interest and comparing them with the most recent LHC data from the ATLAS experiment.
Books on the topic "Next-to-leading order (NLO)"
Johansen, Bruce, and Adebowale Akande, eds. Nationalism: Past as Prologue. Nova Science Publishers, Inc., 2021. http://dx.doi.org/10.52305/aief3847.
Full textBook chapters on the topic "Next-to-leading order (NLO)"
Gams, Matjaz, and Matej Ozek. "Use of Data Mining Techniques for Process Analysis on Small Databases." In Dynamic and Advanced Data Mining for Progressing Technological Development, 422–36. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-60566-908-3.ch017.
Full textConference papers on the topic "Next-to-leading order (NLO)"
Safronov, Anton, Carlo Flore, Daniel Kikola, Aleksander Kusina, Jean-Philippe Lansberg, Olivier Mattelaer, and Hua-Sheng Shao. "A tool for automated perturbative cross section computations of asymmetric hadronic collisions at next-to-leading order using the $\texttt{MadGraph5_aMC@NLO}$ framework." In 41st International Conference on High Energy physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.414.0494.
Full text