Academic literature on the topic 'Newman-Janis Algorithm'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Newman-Janis Algorithm.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Newman-Janis Algorithm"

1

Brauer, O., H. A. Camargo, and M. Socolovsky. "Newman-Janis Algorithm Revisited." International Journal of Theoretical Physics 54, no. 1 (July 2, 2014): 302–14. http://dx.doi.org/10.1007/s10773-014-2225-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harold Erbin and Lucien Heurtier. "Five-dimensional Janis–Newman algorithm." Classical and Quantum Gravity 32, no. 16 (July 23, 2015): 165004. http://dx.doi.org/10.1088/0264-9381/32/16/165004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rajan, Del, and Matt Visser. "Cartesian Kerr–Schild variation on the Newman–Janis trick." International Journal of Modern Physics D 26, no. 14 (December 2017): 1750167. http://dx.doi.org/10.1142/s021827181750167x.

Full text
Abstract:
The Newman–Janis trick is a procedure, (not even really an ansatz), for obtaining the Kerr spacetime from the Schwarzschild spacetime. This 50 years old trick continues to generate heated discussion and debate even to this day. Most of the debate focusses on whether the Newman–Janis procedure can be upgraded to the status of an algorithm, or even an inspired ansatz, or is it just a random trick of no deep physical significance. (That the Newman–Janis procedure very quickly led to the discovery of the Kerr–Newman spacetime is a point very much in its favor.) In the current paper, we will not answer these deeper questions, we shall instead present a much simpler alternative variation on the theme of the Newman–Janis trick that might be easier to work with. We shall present a 2-step version of the Newman–Janis trick that works directly with the Kerr–Schild “Cartesian” metric presentation of the Kerr spacetime. That is, we show how the original 4-step Newman–Janis procedure can, (using the interplay between oblate spheroidal and Cartesian coordinates), be reduced to a considerably cleaner 2-step process.
APA, Harvard, Vancouver, ISO, and other styles
4

Keane, Aidan J. "An extension of the Newman–Janis algorithm." Classical and Quantum Gravity 31, no. 15 (July 14, 2014): 155003. http://dx.doi.org/10.1088/0264-9381/31/15/155003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Erbin, Harold. "Janis-Newman algorithm for supergravity black holes." Fortschritte der Physik 64, no. 4-5 (March 15, 2016): 376–77. http://dx.doi.org/10.1002/prop.201500065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gutiérrez-Chávez, Carlos, Francisco Frutos-Alfaro, Iván Cordero-García, and Javier Bonatti-González. "A Computer Program for the Newman-Janis Algorithm." Journal of Modern Physics 06, no. 15 (2015): 2226–30. http://dx.doi.org/10.4236/jmp.2015.615227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Erbin, Harold, and Lucien Heurtier. "Supergravity, complex parameters and the Janis–Newman algorithm." Classical and Quantum Gravity 32, no. 16 (July 23, 2015): 165005. http://dx.doi.org/10.1088/0264-9381/32/16/165005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Drake, S. P., and Peter Szekeres. "Uniqueness of the Newman–Janis Algorithm in Generating the Kerr–Newman Metric." General Relativity and Gravitation 32, no. 3 (March 2000): 445–57. http://dx.doi.org/10.1023/a:1001920232180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Babar, Rimsha, Muhammad Asgher, and Riasat Ali. "Gravitational analysis of Einstein-non-linear-Maxwell-Yukawa black hole under the effect of Newman-Janis algorithm." Physica Scripta 97, no. 12 (October 28, 2022): 125201. http://dx.doi.org/10.1088/1402-4896/ac9863.

Full text
Abstract:
Abstract In this paper, we analyze the rotating Einstein-non-linear-Maxwell-Yukawa black hole solution by Janis-Newman algorithmic rule and complex calculations. We investigate the basic properties (i.e., Hawking radiation) for the corresponding black hole solution. From the horizon structure of the black hole, we discuss the graphical behavior of Hawking temperature T H and analyze the effects of spin parameter (appears due to Newman-Janis approach) on the T H of black hole. Furthermore, we investigate the corrected temperature for rotating Einstein-non-linear-Maxwell-Yukawa black hole by using the vector particles tunneling strategy which is based on Hamilton-Jacobi method. We additionally study the graphical explanation of corrected T H through outer horizon to investigate the physical and stable conditions of black hole. Finally, we compute the corrected entropy and check that the effect of charged, rotation and gravity on entropy.
APA, Harvard, Vancouver, ISO, and other styles
10

Erbin, Harold. "Janis–Newman Algorithm: Generating Rotating and NUT Charged Black Holes." Universe 3, no. 1 (March 7, 2017): 19. http://dx.doi.org/10.3390/universe3010019.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Newman-Janis Algorithm"

1

Erbin, Harold. "Trous noirs en supergravité N = 2." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066367/document.

Full text
Abstract:
La solution des équations d'Einstein–Maxwell décrivant le trou noir le plus général a été découverte par Plebański et Demiański en 1976. Cette thèse accomplit plusieurs étapes en vue d'intégrer une généralisation de cette solution en supergravité jaugée N = 2. Le contenu bosonique de cette dernière comprend la métrique assortie de champs de jauge et de deux types de champs scalaires (appelés scalaires-vecteurs et hyperscalaires); cela implique qu'il est beaucoup plus compliqué de trouver une solution générale et l'on doit se restreindre à des classes particulières de solutions ou bien utiliser des algorithmes pour générer des solutions.Dans la première partie de cette thèse nous approchons ce problème grâce à la première stratégie en nous restreignant aux solutions BPS.Dans un premier temps nous étudions les jaugeages abéliens qui impliquent les hyperscalaires afin de comprendre quelles sont les conditions nécessaires pour obtenir des vides N = 2 adS4 ainsi que des géométries de proche-horizon associées à des trous noirs statiques.Par la suite nous décrivons une solution générale et analytique pour des trous noirs (extrémaux) 1/4-BPS qui possèdent une masse, une charge de NUT, des charges dyoniques et des champs scalaires non-triviaux dans le contexte de la supergravité N = 2 jaugée à la Fayet–Iliopoulos.Dans la seconde partie nous obtenons une extension de l'algorithme de Janis-Newman afin de prendre en compte tous les champs bosoniques de spin inférieur à 2, les horizons topologiques et le cas des autres dimensions.Ainsi cela met à disposition tous les outils nécessaires pour appliquer cet algorithme à la supergravité (jaugée ou non)
The most general black hole solution of Einstein–Maxwell theory has been discovered by Plebański and Demiański in 1976.This thesis provides several steps towards generalizing this solution by embedding it into N = 2 gauged supergravity.The (bosonic fields of the) latter consists in the metric together with gauge fields and two kinds of scalar fields (vector scalars and hyperscalars); as a consequence finding a general solution is involved and one needs to focus on specific subclasses of solutions or to rely on solution generating algorithms. In the first part of the thesis we approach the problem using the first strategy: we restrict our attention to BPS solutions, relying on a symplectic covariant formalism. First we study the possible Abelian gaugings involving the hyperscalars in order to understand which are the necessary conditions for obtaining N = 2 adS4 vacua and near-horizon geometries associated to the asymptotics of static black holes.A preliminary step is to obtain covariant expressions for the Killing vectors of symmetric special quaternionic-Kähler manifolds. Then we describe a general analytic solutions for 1/4-BPS (extremal) black holes with mass, NUT, dyonic charges and running scalars in N = 2 Fayet–Iliopoulos gauged supergravity with a symmetric very special Kähler manifold. In the second part we provide an extension of the Janis–Newman algorithm to all bosonic fields with spin less than 2, to topological horizons and to other dimensions. This provides all the necessary tools for applying this solution generating algorithm to (un)gauged supergravity, and interesting connections with the N = 2 supergravity theory are unravelled
APA, Harvard, Vancouver, ISO, and other styles
2

Canonico, Rosangela. "Exact solutions in general relativity and alternative theories of gravity: mathematical and physical properties." Doctoral thesis, Universita degli studi di Salerno, 2011. http://hdl.handle.net/10556/181.

Full text
Abstract:
2009 - 2010
In this thesis, we discuss several subjects connected with the framework of GR, in order to characterize astrophysical compact objects. The main purpose is to provide simple models describing gravitational fields generated by isolated compact bodies in stationary rotation with extremely simple internal structure, such as neutron stars. The main tools used for our analysis are exact solutions of Einstein fields equations, which have been approached in different ways. In particular, we use the formalism of junction conditions for finding new solutions of Einstein equations in presence of matter by matching metrics representing two shells of a compact body. With the same aim, we introduce the Newmann-Janis Algorithm, a solution generating technique which provides metrics of reduced symmetries from symmetric ones. Finally, an exact solution of Einstein's field equations, known as Einstein Static Universe is studied in the framework of Cosmology. Our purpose is to study the stability properties of this solution focusing on the intriguing possibility of finding static solutions in open cosmological models (k = -1). [edited by author]
IX n.s.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Newman-Janis Algorithm"

1

Canonico, Rosangela, and Luca Parisi. The Newman Janis Algorithm: A Review of Some Results. GIQ, 2012. http://dx.doi.org/10.7546/giq-12-2011-159-169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Canonico, Rosangela, and Luca Parisi. Theoretical Models For Astrophysical Objects and the Newman-Janis Algorithm. GIQ, 2012. http://dx.doi.org/10.7546/giq-11-2010-85-96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography