To see the other types of publications on this topic, follow the link: Neutron reflectivity.

Journal articles on the topic 'Neutron reflectivity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Neutron reflectivity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cousin, Fabrice, and Alain Menelle. "Neutron reflectivity." EPJ Web of Conferences 104 (2015): 01005. http://dx.doi.org/10.1051/epjconf/201510401005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Penfold, Jeffrey. "Neutron Reflectivity." Langmuir 25, no. 7 (April 7, 2009): 3919. http://dx.doi.org/10.1021/la9003824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cousin, Fabrice, and Alexis Chennevière. "Neutron reflectivity for soft matter." EPJ Web of Conferences 188 (2018): 04001. http://dx.doi.org/10.1051/epjconf/201818804001.

Full text
Abstract:
Specular neutron reflectivity is a technique enabling the measurement of coherent neutron scattering length density profile perpendicular to the plane of a surface or interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5Å up 5000 Å. It is a scattering technique that averages information over the entire surface and it is therefore not possible to obtain information on correlations in the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, negligible absorption, low energy of the incident neutrons) makes it particularly interesting in the fields of soft matter and biophysics. This course is composed of three parts describing respectively its principle, the experimental aspects (diffractometers, samples), and some scientific examples of neutron reflectometry focusing on the use of contrast variation to probe polymeric systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Yamazaki, Dai, and Masahiro Hino. "Neutron Reflectivity Measurement." hamon 19, no. 1 (2009): 34–40. http://dx.doi.org/10.5611/hamon.19.1_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Majkrzak, C. F., and N. F. Berk. "Inverting specular neutron reflectivity." Acta Crystallographica Section A Foundations of Crystallography 52, a1 (August 8, 1996): C472. http://dx.doi.org/10.1107/s0108767396080658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Penfold, J. "Instrumentation for neutron reflectivity." Physica B: Condensed Matter 173, no. 1-2 (August 1991): 1–10. http://dx.doi.org/10.1016/0921-4526(91)90028-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vignaud, Guillaume, and Alain Gibaud. "REFLEX: a program for the analysis of specular X-ray and neutron reflectivity data." Journal of Applied Crystallography 52, no. 1 (February 1, 2019): 201–13. http://dx.doi.org/10.1107/s1600576718018186.

Full text
Abstract:
The use of X-ray and neutron reflectivity has been generalized worldwide for scientists who want to determine specific physical properties (such as electron-density profile, scattering-length density, roughness and thickness) of films less than 200 nm thick deposited on a substrate. This paper describes a freeware program named REFLEX, which is a standalone program dedicated to the simulation and analysis of X-ray and neutron reflectivity from multilayers. This program was first written two decades ago and has been constantly improved since, but never published until now. The latest version of REFLEX covers generalized types of calculation of reflectivity curves including both neutron and X-ray reflectivity. In the case of X-rays, the program can deal with both s and p polarization, which is quite important in the soft X-ray region where the two polarizations can yield different results. Neutron reflectivity is calculated within the framework of non-spin-polarized neutrons. REFLEX has also been designed to include any type of fluid (such as supercritical CO2) on top of the analysed film and includes corrections of the footprint effect for analysis on an absolute scale.
APA, Harvard, Vancouver, ISO, and other styles
8

Bucknall, D. G., S. A. Butler, and J. S. Higgins. "Neutron reflectivity of polymer interfaces." Journal of Physics and Chemistry of Solids 60, no. 8-9 (September 1999): 1273–77. http://dx.doi.org/10.1016/s0022-3697(99)00101-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zabel, Hartmut. "Neutron reflectivity of spintronic materials." Materials Today 9, no. 1-2 (January 2006): 42–49. http://dx.doi.org/10.1016/s1369-7021(05)71337-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Berk, N. F., and C. F. Majkrzak. "Wavelet Analysis of Neutron Reflectivity†." Langmuir 19, no. 19 (September 2003): 7811–17. http://dx.doi.org/10.1021/la034126w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lee, L. T., D. Langevin, E. K. Mann, and B. Farnoux. "Neutron reflectivity at liquid interfaces." Physica B: Condensed Matter 198, no. 1-3 (April 1994): 83–88. http://dx.doi.org/10.1016/0921-4526(94)90133-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Basu, Saibal. "Specular neutron reflectivity and beyond." Pramana 71, no. 4 (October 2008): 777–84. http://dx.doi.org/10.1007/s12043-008-0268-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ankner, John F., and Hartmut Zabel. "Applications of Neutron Reflectivity Measurements to Nanoscience: Thin Films and Interfaces." MRS Bulletin 28, no. 12 (December 2003): 918–22. http://dx.doi.org/10.1557/mrs2003.255.

Full text
Abstract:
AbstractNeutron reflectivity has matured in recent years from an exotic method used only by a few experts to an essential tool for the investigation of thin films and interfaces on the nanoscale. In contrast to x-ray reflectivity, which provides electron density profiles, neutron reflectivity reveals the nuclear density profile. This is an essential difference when exploring hydrogenous materials such as polymers, Langmuir–Blodgett films, and membranes. Furthermore, neutrons carry a magnetic moment that interacts with the magnetic induction of the film, revealing, in addition to the nuclear density profile, the magnetic density profile in layers and superlattices. Recent developments in the analysis of off-specular neutron reflectivity data enable the characterization of chemical and magnetic correlations within the film plane on nanometer to micron length scales. A new generation of pulsed neutron sources, featuring flux enhancements of factors of 10–100 over existing sources, will make these types of measurements even more exciting, while kinetic studies, pump-probe, and small-sample experiments will become feasible, opening new windows onto nanoscale materials science.
APA, Harvard, Vancouver, ISO, and other styles
14

Cousin, Fabrice, and Giulia Fadda. "An introduction to neutron reflectometry." EPJ Web of Conferences 236 (2020): 04001. http://dx.doi.org/10.1051/epjconf/202023604001.

Full text
Abstract:
Specular neutron reflectivity is a neutron diffraction technique that provides information about the structure of surfaces or thin films. It enables the measurement of the neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby gives access to the profile of the chemical composition of the film. The wave-particle duality allows to describe neutrons as waves; at an interface between two media of different refractive indexes, neutrons are partially reflected and refracted by the interface. Interferences can occur between waves reflected at the top and at the bottom of a thin film at an interface, which gives rise to interference fringes in the reflectivity profile directly related to its thickness. The characteristic sizes that can be probed range from 5Å to 2000 Å. Neutron-matter interaction directly occurs between neutron and the atom nuclei, which enable to tune the contrast by isotopic substitution. This makes it particularly interesting in the fields of soft matter and biophysics. This course is composed of two parts describing respectively its principle and the experimental aspects of the method (instruments, samples). Examples of applications of neutron reflectometry in the biological domain are presented by Y. Gerelli in the book section “Applications of neutron reflectometry in biology”.
APA, Harvard, Vancouver, ISO, and other styles
15

Cubitt, Robert, Jaime Segura Ruiz, and Werner Jark. "RAINBOWS: refractive analysis of the incoming neutron beam over the white spectrum. A new fast neutron reflectometry technique exploiting a focusing prism." Journal of Applied Crystallography 51, no. 2 (March 1, 2018): 257–63. http://dx.doi.org/10.1107/s1600576718001528.

Full text
Abstract:
Neutron reflectivity is a powerful technique for characterizing interfaces in many areas of science. The traditional method of time of flight for measuring the wavelength of neutrons in a white beam is extremely wasteful, as the vast majority of neutrons must be absorbed in the choppers in order to produce a pulsed beam. A prism operates continuously, with a transmission up to two orders of magnitude higher than choppers. The wavelength-dependent deflection of the beam by the prism, coupled with a high spatial resolution detector, results in excellent wavelength resolution. The theory of how the resolution is considerably enhanced by curving the surface of the prism is described in detail for a real experimental arrangement. It is demonstrated how this can be used for faster neutron reflectometry, including the merging of different angles and subtraction of background. The technique shows considerable promise for neutron reflectivity, opening up new areas of science particularly in the realms of kinetics and small samples.
APA, Harvard, Vancouver, ISO, and other styles
16

Takahara, Atsushi. "Introductory Review Series for Neutron Reflectivity." hamon 18, no. 4 (2008): 220. http://dx.doi.org/10.5611/hamon.18.220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

L. YAMADA, Norifumi. "Neutron Reflectivity Measurements at Oversea Facilities." hamon 22, no. 1 (2012): 67–70. http://dx.doi.org/10.5611/hamon.22.1_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ankner, J. F., C. F. Majkrzak, and S. K. Satija. "Neutron reflectivity and grazing angle diffraction." Journal of Research of the National Institute of Standards and Technology 98, no. 1 (January 1993): 47. http://dx.doi.org/10.6028/jres.098.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gabrys, B. J., A. A. Bhutto, D. G. Bucknall, R. Braiewa, D. Vesely, and R. A. Weiss. "Neutron reflectivity studies of ionomer blends." Applied Physics A: Materials Science & Processing 74 (December 1, 2002): s336—s338. http://dx.doi.org/10.1007/s003390101098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Penfold, J. "Neutron reflectivity and soft condensed matter." Current Opinion in Colloid & Interface Science 7, no. 1-2 (March 2002): 139–47. http://dx.doi.org/10.1016/s1359-0294(02)00015-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Menelle, A., J. Jestin, and F. Cousin. "Liquid interfaces investigated by neutron reflectivity." Neutron News 14, no. 3 (January 2003): 26–30. http://dx.doi.org/10.1080/10448630308229343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

BURGESS, A. N. "NEUTRON REFLECTIVITY MEASUREMENTS ON POLYMERIC SYSTEMS." Nondestructive Testing and Evaluation 5, no. 5-6 (December 1990): 415–23. http://dx.doi.org/10.1080/02780899008952982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tappert, J., F. Klose, Ch Rehm, W. S. Kim, R. A. Brand, H. Maletta, and W. Keune. "Neutron reflectivity on Tb/Fe multilayers." Journal of Magnetism and Magnetic Materials 156, no. 1-3 (April 1996): 58–60. http://dx.doi.org/10.1016/0304-8853(95)00785-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Higgins, J. S., S. A. Butler, and D. G. Bucknall. "Neutron reflectivity of polymer-plasticiser diffusion." Macromolecular Symposia 190, no. 1 (November 2002): 1–8. http://dx.doi.org/10.1002/masy.200290015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mironov, Daniil, James H. Durant, Rebecca Mackenzie, and Joshaniel F. K. Cooper. "Towards automated analysis for neutron reflectivity." Machine Learning: Science and Technology 2, no. 3 (April 23, 2021): 035006. http://dx.doi.org/10.1088/2632-2153/abe7b5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Menelle, A. "Surfaces and interfaces using neutron reflectivity." Acta Physica Hungarica 75, no. 1-4 (December 1994): 123–30. http://dx.doi.org/10.1007/bf03156566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

White, John W., Anthony S. Brown, Stephen A. Holt, and Paul M. Saville. "Neutron and X-ray Reflectometry: Solid Multilayers and Crumpling Films." Australian Journal of Physics 50, no. 2 (1997): 391. http://dx.doi.org/10.1071/p96021.

Full text
Abstract:
The structures of films and interfaces at the molecular level can be determined from specular reflectivity measurements using neutrons and X-rays. A general introduction to the principles of neutron and X-ray reflectometry is given. Illustrative examples of the application of neutron and X-ray reflectometry to problems of chemical and physical interest are presented.
APA, Harvard, Vancouver, ISO, and other styles
28

Kumada, Takayuki, Kazuhiro Akutsu, Kazuki Ohishi, Toshiaki Morikawa, Yukihiko Kawamura, Masae Sahara, Jun-ichi Suzuki, and Naoya Torikai. "Development of spin-contrast-variation neutron reflectometry for the structural analysis of multilayer films." Journal of Applied Crystallography 52, no. 5 (September 6, 2019): 1054–60. http://dx.doi.org/10.1107/s1600576719010616.

Full text
Abstract:
The spin-contrast-variation neutron reflectometry technique was developed for the structural analysis of multilayer films. Polarized-neutron reflectivity curves of film samples vary as a function of their proton polarization (P H). The P H-dependent reflectivity curves of a polystyrene monolayer film were precisely reproduced using a common set of structural parameters and the P H-dependent neutron scattering length density of polystyrene. This result ensures that these curves are not deformed by inhomogeneous P H but can be used for structural analysis. Unpolarized reflectivity curves of poly(styrene-block-isoprene) films were reproduced using a flat free-surface model but P H-dependent polarized reflectivity curves were not. The global fit of the P H-dependent multiple reflectivity curves revealed that holes with a depth corresponding to one period of the periodic lamellae of microphase-separated polystyrene and polyisoprene domains were produced on the surface of the films, which agrees with the microscopic results. In this manner, the spin-contrast-variation neutron reflectometry technique determines the structure of multiple surfaces and interfaces in a film sample while excluding the incorrect structure that accidentally accounts for a single unpolarized reflectivity curve only.
APA, Harvard, Vancouver, ISO, and other styles
29

Vadalà, M., M. Wolff, K. Westerholt, H. Zabel, P. Wisniowski, and S. Cardoso. "X-ray Reflectivity and Polarized Neutron Reflectivity Investigations of [Co60Fe60B20/MgO]nMultilayers." Acta Physica Polonica A 112, no. 6 (December 2007): 1249–57. http://dx.doi.org/10.12693/aphyspola.112.1249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ott, Frédéric, and Sergey Kozhevnikov. "Off-specular data representations in neutron reflectivity." Journal of Applied Crystallography 44, no. 2 (February 11, 2011): 359–69. http://dx.doi.org/10.1107/s0021889811002858.

Full text
Abstract:
The different methods of data acquisition and representation in neutron reflectometry measurements are discussed. The different representations of diffuse scattering are compared and the off-specular features that can be observed in neutron reflectivity are described. The representation of diffuse data in the `natural' reciprocal-space coordinates (Qx, Qz) leads to a loss of information for smallQzscattering vector. It is suggested that an intermediate representation (Qx/Qz, Qz) allows the unification of data measured on different types of spectrometers and permits a straightforward comparison and understanding while keeping all the interesting features of the off-specular scattering. The discussion is illustrated by diffuse scattering data measured on neutron waveguides obtained on both fixed-wavelength and time-of-flight spectrometers. A simple procedure allowing for dense remapping between different representations is described.
APA, Harvard, Vancouver, ISO, and other styles
31

SAKURAI, Kenji, Masahiro HINO, and Masayasu TAKEDA. "Surface and Interface Studies by Neutron Reflectivity." Journal of the Vacuum Society of Japan 53, no. 12 (2010): 747–52. http://dx.doi.org/10.3131/jvsj2.53.747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kumar, M. Senthil, V. R. Shah, C. Schanzer, P. Böni, T. Krist, and M. Horisberger. "Polarized neutron reflectivity of FeCoV/Ti multilayers." Physica B: Condensed Matter 350, no. 1-3 (July 2004): E241—E244. http://dx.doi.org/10.1016/j.physb.2004.03.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lee, Lay-Theng. "Polymer–surfactant interactions: neutron scattering and reflectivity." Current Opinion in Colloid & Interface Science 4, no. 3 (June 1999): 205–13. http://dx.doi.org/10.1016/s1359-0294(99)00032-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Paul, Amitesh, Heiko Braak, Daniel E. Bürgler, Reinert Schreiber, Diana Rata, Peter Grünberg, Claus M. Schneider, and Thomas Brückel. "Polarized neutron reflectivity of dilute magnetic semiconductors." Physica B: Condensed Matter 397, no. 1-2 (July 2007): 59–61. http://dx.doi.org/10.1016/j.physb.2007.02.079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cooper, Jonathan M., Robert Cubitt, Robert M. Dalgliesh, Nikolaj Gadegaard, Andrew Glidle, A. Robert Hillman, Roger J. Mortimer, Karl S. Ryder, and Emma L. Smith. "Dynamic in Situ Electrochemical Neutron Reflectivity Measurements." Journal of the American Chemical Society 126, no. 47 (December 2004): 15362–63. http://dx.doi.org/10.1021/ja044682s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kuhl, T. L., G. S. Smith, J. Majewski, W. Hamilton, and N. Alcantar. "Investigating confined complex fluids with neutron reflectivity." Neutron News 14, no. 1 (January 2003): 29–31. http://dx.doi.org/10.1080/10448630308218511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kawabata, Yuji, Masatoshi Suzuki, Seiji Tasaki, and Kazumasa Somemiya. "Production and neutron reflectivity of replica supermirror." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 420, no. 1-2 (January 1999): 213–17. http://dx.doi.org/10.1016/s0168-9002(98)01159-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wallet, Brett, Eugenia Kharlampieva, Katie Campbell-Proszowska, Veronika Kozlovskaya, Sidney Malak, John F. Ankner, David L. Kaplan, and Vladimir V. Tsukruk. "Silk Layering As Studied with Neutron Reflectivity." Langmuir 28, no. 31 (July 26, 2012): 11481–89. http://dx.doi.org/10.1021/la300916e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Felcher, G. P., and T. P. Russell. "Analysis and interpretation of neutron reflectivity data." Neutron News 2, no. 1 (January 1991): 9–10. http://dx.doi.org/10.1080/10448639108260733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

MAYES, A. M., and T. P. RUSSELL. "Neutron reflectivity studies of ordered copolymer films." Le Journal de Physique IV 03, no. C8 (December 1993): C8–41—C8–47. http://dx.doi.org/10.1051/jp4:1993809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Swerts, J., K. Temst, C. Van Haesendonck, H. Fritzsche, V. N. Gladilin, V. M. Fomin, and J. T. Devreese. "Polarized neutron reflectivity on dilute magnetic alloys." Europhysics Letters (EPL) 68, no. 2 (October 2004): 282–88. http://dx.doi.org/10.1209/epl/i2004-10195-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mansfield, T. L., D. R. Iyengar, G. Beaucage, T. J. McCarthy, R. S. Stein, and R. J. Composto. "Neutron Reflectivity Studies of End-Grafted Polymers." Macromolecules 28, no. 2 (March 1995): 492–99. http://dx.doi.org/10.1021/ma00106a012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Berk, N. F., and C. F. Majkrzak. "Analysis of Multibeam Data for Neutron Reflectivity†." Langmuir 25, no. 7 (April 7, 2009): 4145–53. http://dx.doi.org/10.1021/la802780v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lee, L. T., D. Langevin, and B. Farnoux. "Neutron reflectivity of an oil-water interface." Physical Review Letters 67, no. 19 (November 4, 1991): 2678–81. http://dx.doi.org/10.1103/physrevlett.67.2678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Roser, Stephen J., Robert M. Richardson, Marcus J. Swann, and A. Robert Hillman. "In situ neutron reflectivity studies of polybithiophene." Journal of the Chemical Society, Faraday Transactions 87, no. 17 (1991): 2863. http://dx.doi.org/10.1039/ft9918702863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Guiselin, O., L. T. Lee, B. Farnoux, and A. Lapp. "Adsorbed polymers: Neutron reflectivity and concentration profiles." Journal of Chemical Physics 95, no. 6 (September 15, 1991): 4632–40. http://dx.doi.org/10.1063/1.461732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Smith, G. S., C. Toprakcioglu, S. M. Baker, J. B. Field, L. Dai, G. Hadziioannou, W. Hamilton, and S. Wages. "Neutron reflectivity study of adsorbed diblock copolymers." Il Nuovo Cimento D 16, no. 7 (July 1994): 721–26. http://dx.doi.org/10.1007/bf02456717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Cooper, Joshaniel F. K., Kunal N. Vyas, Nina-J. Steinke, David M. Love, Christian J. Kinane, and Crispin H. W. Barnes. "Neutron reflectivity of electrodeposited thin magnetic films." Electrochimica Acta 138 (August 2014): 56–61. http://dx.doi.org/10.1016/j.electacta.2014.06.086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Maayouf, R. M. A., and V. G. Syromiatnikov. "Neutron reflectivity measurements of different nickel mirrors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 349, no. 2-3 (October 1994): 540–43. http://dx.doi.org/10.1016/0168-9002(94)91223-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Munter, Alan E., Brent J. Heuser, and Kenneth M. Skulina. "Neutron reflectivity measurements of titanium—beryllium multilayers." Physica B: Condensed Matter 221, no. 1-4 (April 1996): 500–506. http://dx.doi.org/10.1016/0921-4526(95)00971-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography