To see the other types of publications on this topic, follow the link: Neutral time-delay systems.

Journal articles on the topic 'Neutral time-delay systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Neutral time-delay systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Di Loreto, M., and J. J. Loiseau. "Stabilization of Neutral Time-Delay Systems." IFAC Proceedings Volumes 40, no. 23 (September 2007): 135–40. http://dx.doi.org/10.1016/s1474-6670(17)69276-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Bin, and Qingsong Liu. "Input delay compensation for neutral type time-delay systems." Automatica 78 (April 2017): 309–19. http://dx.doi.org/10.1016/j.automatica.2016.12.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, J. D., C. H. Lien, K. K. Fan, and J. S. Cheng. "Delay-dependent stability criterion for neutral time-delay systems." Electronics Letters 36, no. 22 (2000): 1897. http://dx.doi.org/10.1049/el:20001304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Huiying, Guifang Li, and Chengwu Yang. "Delay-dependent H-infinity filtering for neutral time-delay systems." Journal of Control Theory and Applications 4, no. 3 (August 2006): 267–71. http://dx.doi.org/10.1007/s11768-006-5113-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sun, Jian, G. P. Liu, and Jie Chen. "Delay-dependent stability and stabilization of neutral time-delay systems." International Journal of Robust and Nonlinear Control 19, no. 12 (August 2009): 1364–75. http://dx.doi.org/10.1002/rnc.1384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mazenc, Frederic. "Stability Analysis of Time-Varying Neutral Time-Delay Systems." IEEE Transactions on Automatic Control 60, no. 2 (February 2015): 540–46. http://dx.doi.org/10.1109/tac.2014.2342095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xiong, Lianglin, Haiyang Zhang, Yongkun Li, and Zixin Liu. "Improved Stabilization Criteria for Neutral Time-Delay Systems." Mathematical Problems in Engineering 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/8682543.

Full text
Abstract:
This paper addresses the stabilization conditions for neutral systems with mixed time delays. By constructing a novel class of Lyapunov functionals which contains an augmented Lyapunov functional, using a new class of improved Jensen’s like inequalities, two improved delay-dependent stability criteria are firstly established. Next, state feedback controllers are designed according to the stability conditions in different cases. Finally, five numerical examples are provided to demonstrate the theoretical results.
APA, Harvard, Vancouver, ISO, and other styles
8

Ochoa, G., J. E. Veláquez-Veláquez, V. L. Kharitonov, and S. Mondié. "Lyapunov matrices for neutral type time delay systems." IFAC Proceedings Volumes 40, no. 23 (September 2007): 244–49. http://dx.doi.org/10.1016/s1474-6670(17)69295-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Denghao, Pang, and Jiang Wei. "Finite-Time Stability of Neutral Fractional Time-Delay Systems via Generalized Gronwalls Inequality." Abstract and Applied Analysis 2014 (2014): 1–4. http://dx.doi.org/10.1155/2014/610547.

Full text
Abstract:
This paper studies the finite-time stability of neutral fractional time-delay systems. With the generalized Gronwall inequality, sufficient conditions of the finite-time stability are obtained for the particular class of neutral fractional time-delay systems.
APA, Harvard, Vancouver, ISO, and other styles
10

Erol, H. Ersin, and Altuğ İftar. "Stabilization of decentralized descriptor-type neutral time-delay systems by time-delay controllers." Automatica 64 (February 2016): 262–69. http://dx.doi.org/10.1016/j.automatica.2015.11.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sun, Jian, and G. P. Liu. "On Improved Delay-dependent Stability Criteria for Neutral Time-delay Systems." European Journal of Control 15, no. 6 (January 2009): 613–23. http://dx.doi.org/10.3166/ejc.15.613-623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Castelan, E. B., I. Queinnec, and S. Tarbouriech. "Delay-independent robust stability conditions of neutral linear time-delay systems #." IFAC Proceedings Volumes 36, no. 19 (September 2003): 281–86. http://dx.doi.org/10.1016/s1474-6670(17)33339-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Alaviani, S. Sh. "Delay-Dependent Exponential Stability of Linear Time-Varying Neutral Delay Systems." IFAC-PapersOnLine 48, no. 12 (2015): 177–79. http://dx.doi.org/10.1016/j.ifacol.2015.09.373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tang, Mei Lan, and Xin Ge Liu. "On Stability of Neutral Systems with Time-Varying Delay." Applied Mechanics and Materials 50-51 (February 2011): 22–26. http://dx.doi.org/10.4028/www.scientific.net/amm.50-51.22.

Full text
Abstract:
This paper investigates the delay-dependent robust stability of neutral systems with time-varying discrete delays and time-varying structured uncertainties. New delay-dependent stability criteria are obtained and formulated in the form of a linear matrix inequality. Since the criteria take the sizes of the neutral delay, discrete delay and derivative of discrete delay into account, they are less conservative than previous methods. Numerical example is given to indicate significant improvements over some existing results.
APA, Harvard, Vancouver, ISO, and other styles
15

Huo, Yuhong, and Jia-Bao Liu. "Robust H∞ Control For Uncertain Singular Neutral Time-Delay Systems." Mathematics 7, no. 3 (February 26, 2019): 217. http://dx.doi.org/10.3390/math7030217.

Full text
Abstract:
The present paper attempts to investigate the problem of robust H ∞ control for a class of uncertain singular neutral time-delay systems. First, a linear matrix inequality (LMI) is proposed to give a generalized asymptotically stability condition and an H ∞ norm condition for singular neutral time-delay systems. Second, the LMI is utilized to solve the robust H ∞ problem for singular neutral time-delay systems, and a state feedback control law verifies the solution. Finally, four theorems are formulated in terms of a matrix equation and linear matrix inequalities.
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, Yonggang, Shumin Fei, and Yongmin Li. "Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback." Automatica 52 (February 2015): 242–47. http://dx.doi.org/10.1016/j.automatica.2014.11.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Farokhi Moghadam, Hassan, and Nastaran Vasegh. "Robust PID Stabilization of Linear Neutral Time-Delay Systems." International Journal of Computers Communications & Control 9, no. 2 (February 28, 2014): 201. http://dx.doi.org/10.15837/ijccc.2014.2.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Vyhlidal, Tomas, and Pavel Zitek. "Modification of Mikhaylov Criterion for Neutral Time-Delay Systems." IEEE Transactions on Automatic Control 54, no. 10 (October 2009): 2430–35. http://dx.doi.org/10.1109/tac.2009.2029301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Xia, Hongwei, Pingping Zhao, Li Li, Yanmin Wang, and Aiguo Wu. "Improved Stability Criteria for Linear Neutral Time-Delay Systems." Asian Journal of Control 17, no. 1 (March 20, 2014): 343–51. http://dx.doi.org/10.1002/asjc.861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Wu-Hua, Xiaomei Lu, and Guangdeng Zong. "Impulsive stabilization for linear neutral-type time-delay systems." International Journal of Robust and Nonlinear Control 28, no. 17 (September 19, 2018): 5618–33. http://dx.doi.org/10.1002/rnc.4343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Song, Bo, Shengyuan Xu, and Yun Zou. "Delay-Dependent Robust H ∞ Filtering for Uncertain Neutral Stochastic Time-Delay Systems." Circuits, Systems & Signal Processing 28, no. 2 (November 4, 2008): 241–56. http://dx.doi.org/10.1007/s00034-008-9079-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yue, D., S. Won, and O. Kwon. "Delay dependent stability of neutral systems with time delay: an LMI approach." IEE Proceedings - Control Theory and Applications 150, no. 1 (January 1, 2003): 23–27. http://dx.doi.org/10.1049/ip-cta:20030080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Liu, Qingsong. "Delay Compensation of Neutral-Type Time-Delay Control Systems by Cascaded-Observers." Journal of Systems Science and Complexity 36, no. 3 (May 20, 2023): 1053–69. http://dx.doi.org/10.1007/s11424-023-1047-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hua, Mingang, Fengqi Yao, Pei Cheng, Juntao Fei, and Jianjun Ni. "Delay-dependent L 2 – L ∞ filtering for fuzzy neutral stochastic time-delay systems." Signal Processing 137 (August 2017): 98–108. http://dx.doi.org/10.1016/j.sigpro.2017.01.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wang, Ting, Tao Li, Guobao Zhang, and Shumin Fei. "Delay-Derivative-Dependent Stability for Neutral Systems with Time-Varying Delay and Nonlinearity." Arabian Journal for Science and Engineering 42, no. 7 (April 9, 2017): 3033–42. http://dx.doi.org/10.1007/s13369-017-2462-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ucun, L., and I. B. Küçükdemiral. "Delay-Dependent Feedforward Control of Uncertain Neutral Time-Delay Systems via Dynamic IQCs." IFAC Proceedings Volumes 45, no. 13 (2012): 213–18. http://dx.doi.org/10.3182/20120620-3-dk-2025.00059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ucun, L., and I. B. Küçükdemiral. "Robust delay-dependent feedforward control of neutral time-delay systems via dynamic IQCs." International Journal of Systems Science 45, no. 5 (January 14, 2013): 858–72. http://dx.doi.org/10.1080/00207721.2012.740094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Perdon, Anna Maria, and Maria Anderlucci. "Observers and State Reconstructions for Linear Neutral Time-Delay Systems." IFAC Proceedings Volumes 41, no. 2 (2008): 1261–66. http://dx.doi.org/10.3182/20080706-5-kr-1001.00217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Song, Gongfei, Zimeng Zhang, Yanan Zhu, and Tao Li. "Discrete-time control for highly nonlinear neutral stochastic delay systems." Applied Mathematics and Computation 430 (October 2022): 127313. http://dx.doi.org/10.1016/j.amc.2022.127313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ochoa, G., S. Mondié, and V. L. Kharitonov. "Computation of critical parameters for neutral type time delay systems." IFAC Proceedings Volumes 43, no. 2 (2010): 177–82. http://dx.doi.org/10.3182/20100607-3-cz-4010.00033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Leite, V. J. S., P. L. D. Peres, E. B. Castelan, and S. Tarbouriech. "H∞ GUARANTEED COST OF NEUTRAL SYSTEMS WITH TIME-VARYING DELAY." IFAC Proceedings Volumes 39, no. 9 (2006): 447–52. http://dx.doi.org/10.3182/20060705-3-fr-2907.00077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kharitonov, V., S. Mondie, and J. Collado. "Exponential estimates for neutral time-delay systems: an LMI approach." IEEE Transactions on Automatic Control 50, no. 5 (May 2005): 666–70. http://dx.doi.org/10.1109/tac.2005.846595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Koumboulis, Fotis N., George E. Panagiotakis, and Paraskevas N. Paraskevopoulos. "Exact model matching of left invertible neutral time delay systems." International Journal of Modelling, Identification and Control 3, no. 4 (2008): 376. http://dx.doi.org/10.1504/ijmic.2008.020546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Aliseyko, A. N. "Lyapunov matrices for neutral time-delay systems with exponential kernel." Systems & Control Letters 131 (September 2019): 104497. http://dx.doi.org/10.1016/j.sysconle.2019.104497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Liu, Pin-Lin. "Stabilization criteria for neutral time delay systems with saturating actuators." Journal of the Franklin Institute 347, no. 8 (October 2010): 1577–88. http://dx.doi.org/10.1016/j.jfranklin.2010.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rabah, R., G. M. Sklyar, and P. Yu Barkhayev. "On Exact Controllability of Time-Delay Systems of Neutral Type." Ukrainian Mathematical Journal 68, no. 6 (November 2016): 910–27. http://dx.doi.org/10.1007/s11253-016-1265-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sakthivel, R., K. Mathiyalagan, and S. Marshal Anthoni. "Robust stability and control for uncertain neutral time delay systems." International Journal of Control 85, no. 4 (April 2012): 373–83. http://dx.doi.org/10.1080/00207179.2011.653832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Alaviani, S. Sh. "Controllability of a class of nonlinear neutral time-delay systems." Applied Mathematics and Computation 232 (April 2014): 1235–41. http://dx.doi.org/10.1016/j.amc.2014.01.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

İftar, Altuğ. "Inclusion Principle and Overlapping Decompositions of Neutral Time-Delay Systems." IFAC-PapersOnLine 52, no. 3 (2019): 102–7. http://dx.doi.org/10.1016/j.ifacol.2019.06.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kharitonov, Vladimir, Joaquín Collado, and Sabine Mondié. "Exponential estimates for neutral time delay systems with multiple delays." International Journal of Robust and Nonlinear Control 16, no. 2 (2005): 71–84. http://dx.doi.org/10.1002/rnc.1041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yu, Shengchun, Yanzhen Pang, Guici Chen, and Xin Zhou. "Dissipativity Analysis for a Class of Discrete-Time Neutral Stochastic Nonlinear Systems with Time Delay." Discrete Dynamics in Nature and Society 2021 (June 23, 2021): 1–17. http://dx.doi.org/10.1155/2021/9932134.

Full text
Abstract:
This paper focuses on the problem of dissipativity analysis for a class of discrete-time neutral stochastic nonlinear systems (DTNSNSs) with time delay and parameter uncertainties. Different from the existing results on this topic of neutral system, a kind of discretizing the neutral system is considered. Firstly, a sufficient condition of the dissipativity, which is dependent on the solution of the Lyapunov–Krasovskii technique and linear matrix inequalities (LMIs), is established. Moreover, the state-feedback controller is designed to guarantee the dissipative performance of the closed-loop system. The effectiveness of the theoretical results is finally demonstrated by a numerical example.
APA, Harvard, Vancouver, ISO, and other styles
42

Ge, Chao, Chang-Chun Hua, and Xin-Ping Guan. "New Delay-dependent stability criteria for neutral systems with time-varying delay using delay-decomposition approach." International Journal of Control, Automation and Systems 12, no. 4 (July 1, 2014): 786–93. http://dx.doi.org/10.1007/s12555-013-0118-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Xia, Hongwei, Pingping Zhao, Li Li, Aiguo Wu, and Guangcheng Ma. "A Novel Approach toH∞Control Design for Linear Neutral Time-Delay Systems." Mathematical Problems in Engineering 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/526017.

Full text
Abstract:
This paper is concerned with the problem ofH∞control of linear neutral systems with time-varying delay. Firstly, by applying a novel Lyapunov-Krasovskii functional which is constructed with the idea of delay partitioning approach, appropriate free-weighting matrices, an improved delay-dependent bounded real lemma (BRL) for neutral systems is established. By using the obtained BRL, a delay-dependent sufficient condition for the existence of a state-feedback controller, which ensures asymptotic stability and a prescribedH∞performance level of the corresponding closed-loop system, is formulated in terms of linear matrix inequalities. Some numerical examples are given to illustrate the effectiveness of the proposed design method.
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Xipan, Changchun Shen, and Dingju Xu. "Reachable set estimation for neutral semi-Markovian jump systems with time-varying delay." AIMS Mathematics 9, no. 4 (2024): 8043–62. http://dx.doi.org/10.3934/math.2024391.

Full text
Abstract:
<abstract><p>This work addresses the issue of finding ellipsoidal bounds of reachable sets for neutral semi-Markovian jump systems with time-varying delay and bounded peak disturbances, for which the related result has been rarely proposed for neutral semi-Markovian jump systems. Based on the modified improved Lyapunov-Krasovskii functional, a boundary of the reachable set for neutral semi-Markovian jump systems was obtained with the aid of utilizing a novel integral inequality and combining with the time-delay segmentation technique. The numerical examples are supplied to verify the effectiveness of the obtained results.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
45

Altun, Yener. "Stability of fractional neutral systems with time varying delay based on delay decomposition approach." New Trends in Mathematical Science 4, no. 8 (December 30, 2020): 1–8. http://dx.doi.org/10.20852/ntmsci.2020.408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fan, Kuo-Kuang, Jenq-Der Chen, Chang-Hua Lien, and Jer-Guang Hsieh. "Delay-dependent stability criterion for neutral time-delay systems via linear matrix inequality approach." Journal of Mathematical Analysis and Applications 273, no. 2 (September 2002): 580–89. http://dx.doi.org/10.1016/s0022-247x(02)00275-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tian, Junkang, Lianglin Xiong, Jianxing Liu, and Xiangjun Xie. "Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay." Chaos, Solitons & Fractals 40, no. 4 (May 2009): 1858–66. http://dx.doi.org/10.1016/j.chaos.2007.09.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Balasubramaniam, P., R. Krishnasamy, and R. Rakkiyappan. "Delay-dependent stability of neutral systems with time-varying delays using delay-decomposition approach." Applied Mathematical Modelling 36, no. 5 (May 2012): 2253–61. http://dx.doi.org/10.1016/j.apm.2011.08.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Liu, Pin-Lin. "A delay decomposition approach to stability analysis of neutral systems with time-varying delay." Applied Mathematical Modelling 37, no. 7 (April 2013): 5013–26. http://dx.doi.org/10.1016/j.apm.2012.10.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Ting, Tao Li, Guobao Zhang, and Shumin Fei. "Further triple integral approach to mixed-delay-dependent stability of time-delay neutral systems." ISA Transactions 70 (September 2017): 116–24. http://dx.doi.org/10.1016/j.isatra.2017.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography