Journal articles on the topic 'Neuronal signaling'

To see the other types of publications on this topic, follow the link: Neuronal signaling.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Neuronal signaling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kurniawan, Shahdevi Nandar. "NEURONAL SIGNALING." MNJ (Malang Neurology Journal) 1, no. 2 (July 1, 2015): 85–95. http://dx.doi.org/10.21776/ub.mnj.2015.001.02.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berridge, Michael J. "Neuronal Calcium Signaling." Neuron 21, no. 1 (July 1998): 13–26. http://dx.doi.org/10.1016/s0896-6273(00)80510-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cosker, K. E., and R. A. Segal. "Neuronal Signaling through Endocytosis." Cold Spring Harbor Perspectives in Biology 6, no. 2 (February 1, 2014): a020669. http://dx.doi.org/10.1101/cshperspect.a020669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fields, R. D. "Signaling by Neuronal Swelling." Science Signaling 4, no. 155 (January 4, 2011): tr1. http://dx.doi.org/10.1126/scisignal.4155tr1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Amato, Stephen, and Heng-Ye Man. "AMPK signaling in neuronal polarization." Communicative & Integrative Biology 5, no. 2 (March 2012): 152–55. http://dx.doi.org/10.4161/cib.18968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zheng, James Q., and Mu-ming Poo. "Calcium Signaling in Neuronal Motility." Annual Review of Cell and Developmental Biology 23, no. 1 (November 2007): 375–404. http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rosenberg, S. S., and N. C. Spitzer. "Calcium Signaling in Neuronal Development." Cold Spring Harbor Perspectives in Biology 3, no. 10 (July 5, 2011): a004259. http://dx.doi.org/10.1101/cshperspect.a004259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dorans, Kirsten. "Glowing worms elucidate neuronal signaling." Lab Animal 38, no. 11 (November 2009): 340. http://dx.doi.org/10.1038/laban1109-340b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sontheimer, Harald. "Glial Influences on Neuronal Signaling." Neuroscientist 1, no. 3 (May 1995): 123–26. http://dx.doi.org/10.1177/107385849500100302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nakamura, Shun-ichi, Eri Fukai, Satoshi Miya, Henryk Jesko, and Taro Okada. "Sphingolipid signaling and neuronal function." Pharmacological Reports 63, no. 5 (September 2011): 1279–80. http://dx.doi.org/10.1016/s1734-1140(11)70665-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rogan, Sarah C., and Bryan L. Roth. "Remote Control of Neuronal Signaling." Pharmacological Reviews 63, no. 2 (March 17, 2011): 291–315. http://dx.doi.org/10.1124/pr.110.003020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jameson, K. G., C. A. Olson, S. A. Kazmi, and E. Y. Hsiao. "Toward Understanding Microbiome-Neuronal Signaling." Molecular Cell 78, no. 4 (May 2020): 577–83. http://dx.doi.org/10.1016/j.molcel.2020.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nakamura, Shun-ichi, Eri Fukai, Satoshi Miya, Henryk Jesko, and Taro Okada. "Sphingolipid signaling and neuronal function." Chemistry and Physics of Lipids 164 (August 2011): S9. http://dx.doi.org/10.1016/j.chemphyslip.2011.05.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

O’Banion, Colin P., and Ryohei Yasuda. "Fluorescent sensors for neuronal signaling." Current Opinion in Neurobiology 63 (August 2020): 31–41. http://dx.doi.org/10.1016/j.conb.2020.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yoshimura, T., N. Arimura, and K. Kaibuchi. "Signaling Networks in Neuronal Polarization." Journal of Neuroscience 26, no. 42 (October 18, 2006): 10626–30. http://dx.doi.org/10.1523/jneurosci.3824-06.2006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hara, Makoto R., and Solomon H. Snyder. "Cell Signaling and Neuronal Death." Annual Review of Pharmacology and Toxicology 47, no. 1 (February 2007): 117–41. http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lam, Kin, Zhe Wu, and Klaus Schulten. "Molecular Basis of Neuronal Signaling." Biophysical Journal 108, no. 2 (January 2015): 151a. http://dx.doi.org/10.1016/j.bpj.2014.11.833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Cagin, Umut, Olivia F. Duncan, Ariana P. Gatt, Marc S. Dionne, Sean T. Sweeney, and Joseph M. Bateman. "Mitochondrial retrograde signaling regulates neuronal function." Proceedings of the National Academy of Sciences 112, no. 44 (October 21, 2015): E6000—E6009. http://dx.doi.org/10.1073/pnas.1505036112.

Full text
Abstract:
Mitochondria are key regulators of cellular homeostasis, and mitochondrial dysfunction is strongly linked to neurodegenerative diseases, including Alzheimer’s and Parkinson’s. Mitochondria communicate their bioenergetic status to the cell via mitochondrial retrograde signaling. To investigate the role of mitochondrial retrograde signaling in neurons, we induced mitochondrial dysfunction in the Drosophila nervous system. Neuronal mitochondrial dysfunction causes reduced viability, defects in neuronal function, decreased redox potential, and reduced numbers of presynaptic mitochondria and active zones. We find that neuronal mitochondrial dysfunction stimulates a retrograde signaling response that controls the expression of several hundred nuclear genes. We show that the Drosophila hypoxia inducible factor alpha (HIFα) ortholog Similar (Sima) regulates the expression of several of these retrograde genes, suggesting that Sima mediates mitochondrial retrograde signaling. Remarkably, knockdown of Sima restores neuronal function without affecting the primary mitochondrial defect, demonstrating that mitochondrial retrograde signaling is partly responsible for neuronal dysfunction. Sima knockdown also restores function in a Drosophila model of the mitochondrial disease Leigh syndrome and in a Drosophila model of familial Parkinson’s disease. Thus, mitochondrial retrograde signaling regulates neuronal activity and can be manipulated to enhance neuronal function, despite mitochondrial impairment.
APA, Harvard, Vancouver, ISO, and other styles
19

Popugaeva, E. А., O. L. Vlasova, and I. B. Bezprozvanny. "NEURONAL CALCIUM SIGNALING AND NEURODEGENERATIVE DISEASES." Proceedings of Peter the Great St. Petersburg Polytechnic University, no. 517 (June 2015): 101–10. http://dx.doi.org/10.5862/proc.516.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Navarro Quiroz, Elkin, Roberto Navarro Quiroz, Mostapha Ahmad, Lorena Gomez Escorcia, Jose Villarreal, Cecilia Fernandez Ponce, and Gustavo Aroca Martinez. "Cell Signaling in Neuronal Stem Cells." Cells 7, no. 7 (July 14, 2018): 75. http://dx.doi.org/10.3390/cells7070075.

Full text
Abstract:
The defining characteristic of neural stem cells (NSCs) is their ability to multiply through symmetric divisions and proliferation, and differentiation by asymmetric divisions, thus giving rise to different types of cells of the central nervous system (CNS). A strict temporal space control of the NSC differentiation is necessary, because its alterations are associated with neurological dysfunctions and, in some cases, death. This work reviews the current state of the molecular mechanisms that regulate the transcription in NSCs, organized according to whether the origin of the stimulus that triggers the molecular cascade in the CNS is internal (intrinsic factors) or whether it is the result of the microenvironment that surrounds the CNS (extrinsic factors).
APA, Harvard, Vancouver, ISO, and other styles
21

Habas, A., J. Hahn, X. Wang, and M. Margeta. "Neuronal activity regulates astrocytic Nrf2 signaling." Proceedings of the National Academy of Sciences 110, no. 45 (October 21, 2013): 18291–96. http://dx.doi.org/10.1073/pnas.1208764110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

do Carmo, Jussara M., Alexandre A. da Silva, John Nathan Freeman, Zhen Wang, Sydney P. Moak, Michael W. Hankins, Heather A. Drummond, and John E. Hall. "Neuronal Suppressor of Cytokine Signaling 3." Hypertension 71, no. 6 (June 2018): 1248–57. http://dx.doi.org/10.1161/hypertensionaha.118.11127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hinoi, Eiichi, and Yukio Yoneda. "Glutamate signaling in non-neuronal tissues." Folia Pharmacologica Japonica 139, no. 4 (2012): 165–69. http://dx.doi.org/10.1254/fpj.139.165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hagenston, Anna M., and Manuela Simonetti. "Neuronal calcium signaling in chronic pain." Cell and Tissue Research 357, no. 2 (July 12, 2014): 407–26. http://dx.doi.org/10.1007/s00441-014-1942-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Janesick, Amanda, Stephanie Cherie Wu, and Bruce Blumberg. "Retinoic acid signaling and neuronal differentiation." Cellular and Molecular Life Sciences 72, no. 8 (January 6, 2015): 1559–76. http://dx.doi.org/10.1007/s00018-014-1815-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lu, Yi, Stéphane Belin, and Zhigang He. "Signaling regulations of neuronal regenerative ability." Current Opinion in Neurobiology 27 (August 2014): 135–42. http://dx.doi.org/10.1016/j.conb.2014.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Raol, Jay, and Steven J. Cox. "Inverse problems in neuronal calcium signaling." Journal of Mathematical Biology 67, no. 1 (January 31, 2012): 3–23. http://dx.doi.org/10.1007/s00285-012-0507-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Stern, Christopher M., and Paul G. Mermelstein. "Caveolin regulation of neuronal intracellular signaling." Cellular and Molecular Life Sciences 67, no. 22 (July 15, 2010): 3785–95. http://dx.doi.org/10.1007/s00018-010-0447-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Brini, Marisa, Tito Calì, Denis Ottolini, and Ernesto Carafoli. "Neuronal calcium signaling: function and dysfunction." Cellular and Molecular Life Sciences 71, no. 15 (January 19, 2014): 2787–814. http://dx.doi.org/10.1007/s00018-013-1550-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cooper, Mark S. "Intercellular signaling in neuronal-glial networks." Biosystems 34, no. 1-3 (1995): 65–85. http://dx.doi.org/10.1016/0303-2647(94)01450-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Pandey, Subhash C. "Neuronal signaling systems and ethanol dependence." Molecular Neurobiology 17, no. 1-3 (December 1998): 1–15. http://dx.doi.org/10.1007/bf02802021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Skeby, Katrine K., and Gaël McGill. "Visualizing the Dynamics of Neuronal Signaling." Biophysical Journal 110, no. 3 (February 2016): 326a. http://dx.doi.org/10.1016/j.bpj.2015.11.1750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Namba, Takashi, Yasuhiro Funahashi, Shinichi Nakamuta, Chundi Xu, Tetsuya Takano, and Kozo Kaibuchi. "Extracellular and Intracellular Signaling for Neuronal Polarity." Physiological Reviews 95, no. 3 (July 2015): 995–1024. http://dx.doi.org/10.1152/physrev.00025.2014.

Full text
Abstract:
Neurons are one of the highly polarized cells in the body. One of the fundamental issues in neuroscience is how neurons establish their polarity; therefore, this issue fascinates many scientists. Cultured neurons are useful tools for analyzing the mechanisms of neuronal polarization, and indeed, most of the molecules important in their polarization were identified using culture systems. However, we now know that the process of neuronal polarization in vivo differs in some respects from that in cultured neurons. One of the major differences is their surrounding microenvironment; neurons in vivo can be influenced by extrinsic factors from the microenvironment. Therefore, a major question remains: How are neurons polarized in vivo? Here, we begin by reviewing the process of neuronal polarization in culture conditions and in vivo. We also survey the molecular mechanisms underlying neuronal polarization. Finally, we introduce the theoretical basis of neuronal polarization and the possible involvement of neuronal polarity in disease and traumatic brain injury.
APA, Harvard, Vancouver, ISO, and other styles
34

Kim, Hanjun, Sewoon Kim, Yonghee Song, Wantae Kim, Qi-Long Ying, and Eek-hoon Jho. "Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells." Stem Cells International 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/459301.

Full text
Abstract:
Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or neuronal differentiation of ES cells. To investigate this, we examined the expression profiles of Wnt signaling components. Expression levels of Wnts known to induceβ-catenin were very low in undifferentiated ES cells. Stable ES cell lines which can monitor endogenous activity of Wnt/β-catenin signaling suggest that Wnt signaling was very low in undifferentiated ES cells, whereas it increased during embryonic body formation or neuronal differentiation. Interestingly, application of small molecules which can positively (BIO, GSK3βinhibitor) or negatively (IWR-1-endo, Axin stabilizer) control Wnt/β-catenin signaling suggests that activation of that signaling at different time periods had differential effects on neuronal differentiation of 46C ES cells. Further, ChIP analysis suggested thatβ-catenin/TCF1 complex directly regulated the expression ofSox1during neuronal differentiation. Overall, our data suggest that Wnt/β-catenin signaling plays differential roles at different time points of neuronal differentiation.
APA, Harvard, Vancouver, ISO, and other styles
35

Goshima, Yoshio, Yukio Sasaki, and Masako Kagoshima-Maezono. "Mechanisms for semaphorin/collapsin signaling in neuronal and non-neuronal cells." Neuroscience Research 31 (January 1998): S29. http://dx.doi.org/10.1016/s0168-0102(98)81611-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Laviv, Tal, and Ryohei Yasuda. "Imaging neuronal protein signaling dynamics in vivo." Current Opinion in Neurobiology 69 (August 2021): 68–75. http://dx.doi.org/10.1016/j.conb.2021.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Khan, Mohammad, Yu Liu, Darrell Brann, and Wen-Cheng Xiong. "NETRIN-1 SIGNALING AND GnRH NEURONAL MIGRATION." Biology of Reproduction 77, Suppl_1 (July 1, 2007): 134. http://dx.doi.org/10.1093/biolreprod/77.s1.134a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Solecki, David J., Lynn Model, Jedidiah Gaetz, Tarun M. Kapoor, and Mary E. Hatten. "Par6α signaling controls glial-guided neuronal migration." Nature Neuroscience 7, no. 11 (October 10, 2004): 1195–203. http://dx.doi.org/10.1038/nn1332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Schwab, J. M., and H. J. Schluesener. "Microglia rules: insights into micoglial–neuronal signaling." Cell Death & Differentiation 11, no. 12 (September 10, 2004): 1245–46. http://dx.doi.org/10.1038/sj.cdd.4401487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lovat, Viviana, Davide Pantarotto, Laura Lagostena, Barbara Cacciari, Micaela Grandolfo, Massimo Righi, Giampiero Spalluto, Maurizio Prato, and Laura Ballerini. "Carbon Nanotube Substrates Boost Neuronal Electrical Signaling." Nano Letters 5, no. 6 (June 2005): 1107–10. http://dx.doi.org/10.1021/nl050637m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kuruvilla, Rejji. "Neuronal Signaling in Islet Development and Function." Proceedings for Annual Meeting of The Japanese Pharmacological Society 93 (2020): 1—S01–2. http://dx.doi.org/10.1254/jpssuppl.93.0_1-s01-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Najjar, S., P. Makadia, K. Albers, and B. Davis. "(170) Epithelial-neuronal signaling in the colon." Journal of Pain 18, no. 4 (April 2017): S19. http://dx.doi.org/10.1016/j.jpain.2017.02.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chong, L. D., N. R. Gough, and L. B. Ray. "The Dynamic Synapse: Neuronal Nexus for Signaling." Science Signaling 2002, no. 156 (October 29, 2002): eg11-eg11. http://dx.doi.org/10.1126/stke.2002.156.eg11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Vieira, Mariana S., Vânia A. M. Goulart, Ricardo C. Parreira, Onésia Cristina Oliveira-Lima, Talita Glaser, Yahaira Maria Naaldijk, Alejandra Ferrer, et al. "Decoding epigenetic cell signaling in neuronal differentiation." Seminars in Cell & Developmental Biology 95 (November 2019): 12–24. http://dx.doi.org/10.1016/j.semcdb.2018.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Moroz, LL. "Genealogy of neuronal NO signaling: an overview." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 124 (August 1999): S25. http://dx.doi.org/10.1016/s1095-6433(99)90096-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Arumugam, Thiruma V., Sang-Ha Baik, Priyanka Balaganapathy, Christopher G. Sobey, Mark P. Mattson, and Dong-Gyu Jo. "Notch signaling and neuronal death in stroke." Progress in Neurobiology 165-167 (June 2018): 103–16. http://dx.doi.org/10.1016/j.pneurobio.2018.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tsui-Pierchala, Brian A., Mario Encinas, Jeffrey Milbrandt, and Eugene M. Johnson. "Lipid rafts in neuronal signaling and function." Trends in Neurosciences 25, no. 8 (August 2002): 412–17. http://dx.doi.org/10.1016/s0166-2236(02)02215-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bezprozvanny, Ilya, and Michael R. Hayden. "Deranged neuronal calcium signaling and Huntington disease." Biochemical and Biophysical Research Communications 322, no. 4 (October 2004): 1310–17. http://dx.doi.org/10.1016/j.bbrc.2004.08.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Green, Jill A., and Kirk Mykytyn. "Neuronal ciliary signaling in homeostasis and disease." Cellular and Molecular Life Sciences 67, no. 19 (June 11, 2010): 3287–97. http://dx.doi.org/10.1007/s00018-010-0425-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mikhaylova, Marina, Yogendra Sharma, Carsten Reissner, Falko Nagel, Penmatsa Aravind, Bheemreddy Rajini, Karl-Heinz Smalla, Eckart D. Gundelfinger, and Michael R. Kreutz. "Neuronal Ca2+ signaling via caldendrin and calneurons." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1763, no. 11 (November 2006): 1229–37. http://dx.doi.org/10.1016/j.bbamcr.2006.08.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography