To see the other types of publications on this topic, follow the link: Neuronal cells.

Journal articles on the topic 'Neuronal cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Neuronal cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Robinson, Richard. "NEURONAL PROGENITOR CELLS." Neurology Today 5, no. 2 (February 2005): 70. http://dx.doi.org/10.1097/00132985-200502000-00024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robinson, Richard. "NEURONAL STEM CELLS." Neurology Today 6, no. 14 (July 2006): 15–16. http://dx.doi.org/10.1097/00132985-200607180-00007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gerszon, J., and A. Rodacka. "Determination of trans-resveratrol action on two different types of neuronal cells, neuroblastoma and hippocampal cells." Czech Journal of Food Sciences 34, No. 2 (June 3, 2016): 118–26. http://dx.doi.org/10.17221/401/2015-cjfs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gorman, Adrienne M., Sten Orrenius, and Sandra Ceccatelli. "Apoptosis in neuronal cells." NeuroReport 9, no. 10 (July 1998): R49—R55. http://dx.doi.org/10.1097/00001756-199807130-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Doms, Robert W. "Intracellular A-beta in neuronal and non-neuronal cells." Neurobiology of Aging 21 (May 2000): 70. http://dx.doi.org/10.1016/s0197-4580(00)82535-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zemková, H., F. Vyskočil, J. Kůšek, and J. Vaněček. "Neuronal GABAA receptor in non-neuronal anterior pituitary cells." Journal of Physiology-Paris 88, no. 6 (January 1994): 393. http://dx.doi.org/10.1016/0928-4257(94)90059-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thorn, Peter, Robert Zorec, Jens Rettig, and Damien J. Keating. "Exocytosis in non-neuronal cells." Journal of Neurochemistry 137, no. 6 (May 2, 2016): 849–59. http://dx.doi.org/10.1111/jnc.13602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cogliati, Tiziana. "Stem Cells and neuronal repair." Annals of Neurosciences 16, no. 4 (October 1, 2009): 143–45. http://dx.doi.org/10.5214/ans.0972-7531.0916401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Freeman, Marc R. "Glial (and Neuronal) Cells Missing." Neuron 48, no. 2 (October 2005): 163–65. http://dx.doi.org/10.1016/j.neuron.2005.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kukucka, Jessica, Tessa Wyllie, Justin Read, Lauren Mahoney, and Cenk Suphioglu. "Human neuronal cells: epigenetic aspects." BioMolecular Concepts 4, no. 4 (August 1, 2013): 319–33. http://dx.doi.org/10.1515/bmc-2012-0053.

Full text
Abstract:
AbstractHistone acetyltransferases (HATs) and histone deacetylases (HDACs) promote histone posttranslational modifications, which lead to an epigenetic alteration in gene expression. Aberrant regulation of HATs and HDACs in neuronal cells results in pathological consequences such as neurodegeneration. Alzheimer’s disease is the most common neurodegenerative disease of the brain, which has devastating effects on patients and loved ones. The use of pan-HDAC inhibitors has shown great therapeutic promise in ameliorating neurodegenerative ailments. Recent evidence has emerged suggesting that certain deacetylases mediate neurotoxicity, whereas others provide neuroprotection. Therefore, the inhibition of certain isoforms to alleviate neurodegenerative manifestations has now become the focus of studies. In this review, we aimed to discuss and summarize some of the most recent and promising findings of HAT and HDAC functions in neurodegenerative diseases.
APA, Harvard, Vancouver, ISO, and other styles
11

Karra, D., and R. Dahm. "Transfection Techniques for Neuronal Cells." Journal of Neuroscience 30, no. 18 (May 5, 2010): 6171–77. http://dx.doi.org/10.1523/jneurosci.0183-10.2010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Whalley, Katherine. "Skin cells clear neuronal debris." Nature Reviews Neuroscience 16, no. 3 (February 20, 2015): 122. http://dx.doi.org/10.1038/nrn3928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yao, Pamela J., Erden Eren, Ronald S. Petralia, Jeffrey W. Gu, Ya-Xian Wang, and Dimitrios Kapogiannis. "Mitochondrial Protrusions in Neuronal Cells." iScience 23, no. 9 (September 2020): 101514. http://dx.doi.org/10.1016/j.isci.2020.101514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bauer, Hans-Christian, Herbert Tempfer, Gustav Bernroider, and Hannelore Bauer. "Neuronal stem cells in adults." Experimental Gerontology 41, no. 2 (February 2006): 111–16. http://dx.doi.org/10.1016/j.exger.2005.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ichikawa, Masumi, and Nobuhiro Noro. "Transplantation of labeled neuronal cells." Neuroscience Research Supplements 15 (January 1990): S37. http://dx.doi.org/10.1016/0921-8696(90)90140-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ichikawa, Masumi, and Nobuhiro Noro. "Transplantation of labeled neuronal cells." Neuroscience Research Supplements 11 (January 1990): S37. http://dx.doi.org/10.1016/0921-8696(90)90563-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kivity, Shaye, Yehuda Shoenfeld, Maria-Teresa Arango, Dolores J. Cahill, Sara Louise O’Kane, Margalit Zusev, Inna Slutsky, et al. "Retracted: Anti-ribosomal-phosphoprotein autoantibodies penetrate to neuronal cells via neuronal growth associated protein, affecting neuronal cells in vitro." Rheumatology 56, no. 10 (August 10, 2017): 1827. http://dx.doi.org/10.1093/rheumatology/kex259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Takeda, Yuji S., and Qiaobing Xu. "Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells." PLOS ONE 10, no. 8 (August 6, 2015): e0135111. http://dx.doi.org/10.1371/journal.pone.0135111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Thullbery, Matthew D., Holly D. Cox, Travis Schule, Charles M. Thompson, and Kathleen M. George. "Differential localization of acetylcholinesterase in neuronal and non-neuronal cells." Journal of Cellular Biochemistry 96, no. 3 (2005): 599–610. http://dx.doi.org/10.1002/jcb.20530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sun, Zhongren, Xiaoning Li, Zhiqiang Su, Ying Zhao, Li Zhang, and Mingyuan Wu. "Electroacupuncture-Enhanced Differentiation of Bone Marrow Stromal Cells into Neuronal Cells." Journal of Sport Rehabilitation 18, no. 3 (August 2009): 398–406. http://dx.doi.org/10.1123/jsr.18.3.398.

Full text
Abstract:
Context:Bone marrow stromal cells (BMSCs) can be differentiated into neuronal cells and are used to treat spinal cord injury (SCI).Objective:This study investigated whether electroacupuncture enhances BMSC’s effects on SCI in rats.Design:The effects of transplantation of phosphate-buffered saline or BMSC, electroacupuncture, and a combination of BMSC transplantation and electroacupuncture on SCI were evaluated using a combined behavioral score (CBS). Expressions of neuronal marker neuron-specific enolase (NSE) and gliocyte-specific marker glial fibrillary acidic protein (GFAP) of transplanted BMSC were detected using immunohistochemistry to assess the effect of electroacupuncture on differentiation of BMSC into neuronal cells.Results:The combination of BMSC transplantation and electroacupuncture significantly alleviated CBS in rats with SCI compared with the separate treatment of BMSC or electroacupuncture. In addition, electroacupuncture increased the NSE- and GFAP-positive transplanted BMSCs in spinal cord.Conclusion:Combined treatment showed a better effect, and the mechanisms may be partially caused by enhanced differentiation of BMSC into neuronal cells. Future studies are needed to confirm this.
APA, Harvard, Vancouver, ISO, and other styles
21

Goshima, Yoshio, Yukio Sasaki, and Masako Kagoshima-Maezono. "Mechanisms for semaphorin/collapsin signaling in neuronal and non-neuronal cells." Neuroscience Research 31 (January 1998): S29. http://dx.doi.org/10.1016/s0168-0102(98)81611-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kummer, W., R. Nandigama, K. Filipski, K. Deckmann, G. Krasteva-Christ, and T. Bschleipfer. "Pre-neuronal acetylcholine: Non-neuronal cholinergic cells communicate to sensory neurons." Autonomic Neuroscience 177, no. 1 (August 2013): 31. http://dx.doi.org/10.1016/j.autneu.2013.05.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Park, Yong H., Joshua D. Snook, Iris Zhuang, Guofu Shen, and Benjamin J. Frankfort. "Optimized culture of retinal ganglion cells and amacrine cells from adult mice." PLOS ONE 15, no. 12 (December 7, 2020): e0242426. http://dx.doi.org/10.1371/journal.pone.0242426.

Full text
Abstract:
Cell culture is widely utilized to study the cellular and molecular biology of different neuronal cell populations. Current techniques to study enriched neurons in vitro are primarily limited to embryonic/neonatal animals and induced pluripotent stem cells (iPSCs). Although the use of these cultures is valuable, the accessibility of purified primary adult neuronal cultures would allow for improved assessment of certain neurological diseases and pathways at the cellular level. Using a modified 7-step immunopanning technique to isolate for retinal ganglion cells (RGCs) and amacrine cells (ACs) from adult mouse retinas, we have successfully developed a model of neuronal culture that maintains for at least one week. Isolations of Thy1.2+ cells are enriched for RGCs, with the isolation cell yield being congruent to the theoretical yield of RGCs in a mouse retina. ACs of two different populations (CD15+ and CD57+) can also be isolated. The populations of these three adult neurons in culture are healthy, with neurite outgrowths in some cases greater than 500μm in length. Optimization of culture conditions for RGCs and CD15+ cells revealed that neuronal survival and the likelihood of neurite outgrowth respond inversely to different culture media. Serially diluted concentrations of puromycin decreased cultured adult RGCs in a dose-dependent manner, demonstrating the potential usefulness of these adult neuronal cultures in screening assays. This novel culture system can be used to model in vivo neuronal behaviors. Studies can now be expanded in conjunction with other methodologies to study the neurobiology of function, aging, and diseases.
APA, Harvard, Vancouver, ISO, and other styles
24

Navarro Quiroz, Elkin, Roberto Navarro Quiroz, Mostapha Ahmad, Lorena Gomez Escorcia, Jose Villarreal, Cecilia Fernandez Ponce, and Gustavo Aroca Martinez. "Cell Signaling in Neuronal Stem Cells." Cells 7, no. 7 (July 14, 2018): 75. http://dx.doi.org/10.3390/cells7070075.

Full text
Abstract:
The defining characteristic of neural stem cells (NSCs) is their ability to multiply through symmetric divisions and proliferation, and differentiation by asymmetric divisions, thus giving rise to different types of cells of the central nervous system (CNS). A strict temporal space control of the NSC differentiation is necessary, because its alterations are associated with neurological dysfunctions and, in some cases, death. This work reviews the current state of the molecular mechanisms that regulate the transcription in NSCs, organized according to whether the origin of the stimulus that triggers the molecular cascade in the CNS is internal (intrinsic factors) or whether it is the result of the microenvironment that surrounds the CNS (extrinsic factors).
APA, Harvard, Vancouver, ISO, and other styles
25

Koshimura, Kunio, Yoshio Murakami, and Yuzuru Kato. "Effects of erythropoietin on neuronal cells." Neuroscience Research 31 (January 1998): S245. http://dx.doi.org/10.1016/s0168-0102(98)82384-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Morimoto, Yuji, Yoshiko Morimoto, Jun Nishihira, Osamu Kemmotsu, Takaki Shibano, Satoshi Gando, and Hirochika Shikama. "Pentobarbital inhibits apoptosis in neuronal cells." Critical Care Medicine 28, no. 6 (June 2000): 1899–904. http://dx.doi.org/10.1097/00003246-200006000-00035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

&NA;. "Pentobarbital inhibits apoptosis in neuronal cells." Journal of Neurosurgical Anesthesiology 13, no. 1 (January 2001): 61–62. http://dx.doi.org/10.1097/00008506-200101000-00017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Shen, Xiang, Hongyu Ying, Ye Qiu, Jeong-Seok Park, Rajalekshmy Shyam, Zai-Long Chi, Takeshi Iwata, and Beatrice Y. J. T. Yue. "Processing of Optineurin in Neuronal Cells." Journal of Biological Chemistry 286, no. 5 (November 8, 2010): 3618–29. http://dx.doi.org/10.1074/jbc.m110.175810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

VAN LEEUWEN, F. W. "Molecular misreading in non-neuronal cells." FASEB Journal 14, no. 11 (August 1, 2000): 1595–602. http://dx.doi.org/10.1096/fj.14.11.1595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Araque, Alfonso, and Marta Navarrete. "Glial cells in neuronal network function." Philosophical Transactions of the Royal Society B: Biological Sciences 365, no. 1551 (August 12, 2010): 2375–81. http://dx.doi.org/10.1098/rstb.2009.0313.

Full text
Abstract:
Numerous evidence demonstrates that astrocytes, a type of glial cell, are integral functional elements of the synapses, responding to neuronal activity and regulating synaptic transmission and plasticity. Consequently, they are actively involved in the processing, transfer and storage of information by the nervous system, which challenges the accepted paradigm that brain function results exclusively from neuronal network activity, and suggests that nervous system function actually arises from the activity of neuron–glia networks. Most of our knowledge of the properties and physiological consequences of the bidirectional communication between astrocytes and neurons resides at cellular and molecular levels. In contrast, much less is known at higher level of complexity, i.e. networks of cells, and the actual impact of astrocytes in the neuronal network function remains largely unexplored. In the present article, we summarize the current evidence that supports the notion that astrocytes are integral components of nervous system networks and we discuss some functional properties of intercellular signalling in neuron–glia networks.
APA, Harvard, Vancouver, ISO, and other styles
31

Ehrhart-Bornstein, M., V. Vukicevic, K. F. Chung, and S. R. Bornstein. "Neuronal differentiation of chromaffin progenitor cells." Molecular Psychiatry 14, no. 1 (December 19, 2008): 1. http://dx.doi.org/10.1038/mp.2008.129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vargas Abonce, Stephanie E., Mélanie Leboeuf, Alain Prochiantz, and Kenneth L. Moya. "Homeoprotein Neuroprotection of Embryonic Neuronal Cells." eneuro 6, no. 5 (August 26, 2019): ENEURO.0061–19.2019. http://dx.doi.org/10.1523/eneuro.0061-19.2019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Obara, Yutaro. "Roles of ERK5 in neuronal cells." Folia Pharmacologica Japonica 141, no. 5 (2013): 251–55. http://dx.doi.org/10.1254/fpj.141.251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Obara, Yutaro, and Kuniaki Ishii. "Roles of ERK5 in neuronal cells." Folia Pharmacologica Japonica 141, no. 6 (2013): 354. http://dx.doi.org/10.1254/fpj.141.354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Reyes, Darwin R., Elizabeth M. Perruccio, S. Patricia Becerra, Laurie E. Locascio, and Michael Gaitan. "Micropatterning Neuronal Cells on Polyelectrolyte Multilayers." Langmuir 20, no. 20 (September 2004): 8805–11. http://dx.doi.org/10.1021/la049249a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bradford, Jennifer W., Shihua Li, and Xiao-Jiang Li. "Polyglutamine toxicity in non-neuronal cells." Cell Research 20, no. 4 (March 16, 2010): 400–407. http://dx.doi.org/10.1038/cr.2010.32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Rodriguez-Boulan, E., and S. K. Powell. "Polarity of Epithelial and Neuronal Cells." Annual Review of Cell Biology 8, no. 1 (November 1992): 395–427. http://dx.doi.org/10.1146/annurev.cb.08.110192.002143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Van Leeuwen, Fred W., Elly M. Hol, Rob W. H. Hermanussen, Marc A. F. Sonnemans, Ewoud Moraal, David F. Fischer, Dana A. P. Evans, KUM‐FAI Chooi, J. Peter H. Burbach, and David Murphy. "Molecular misreading in non‐neuronal cells." FASEB Journal 14, no. 11 (August 2000): 1595–602. http://dx.doi.org/10.1096/fj.99-0825com.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

La Russa, Vincent F., Debasis Mondal, Alan Miller, Hana Safah, Marta Rozans, Tyler Curiel, Krishna Agrawal, and Roy Weiner. "Neuronal Stem Cells Biology and Plasticity." Cancer Investigation 21, no. 5 (January 2003): 792–804. http://dx.doi.org/10.1081/cnv-120023777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Luukko, Keijo. "Neuronal cells and neurotrophins in odontogenesis." European Journal of Oral Sciences 106, S1 (January 1998): 80–93. http://dx.doi.org/10.1111/j.1600-0722.1998.tb02157.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Eagles, Peter A. M., Amer N. Qureshi, and Suwan N. Jayasinghe. "Electrohydrodynamic jetting of mouse neuronal cells." Biochemical Journal 394, no. 2 (February 10, 2006): 375–78. http://dx.doi.org/10.1042/bj20051838.

Full text
Abstract:
CAD (Cath.a-differentiated) cells, a mouse neuronal cell line, were subjected to electrohydrodynamic jetting at a field strength of 0.47–0.67 kV/mm, corresponding to an applied voltage of 7–10 kV. After jetting, the cells appeared normal and continued to divide at rates similar to those shown by control samples. Jetted cells, when placed in serum-free medium, underwent differentiation that was sustained for at least 1 month. Some of the droplets produced by jetting contained only a few cells. These results indicate that the process of jetting does not significantly perturb neuronal cells and that this novel approach might in the future be a useful way to deposit small numbers of living nerve cells on to surfaces.
APA, Harvard, Vancouver, ISO, and other styles
42

Yun, Chohee, Jonathan Mendelson, Tiffany Blake, Lopa Mishra, and Bibhuti Mishra. "TGF-βSignaling in Neuronal Stem Cells." Disease Markers 24, no. 4-5 (2008): 251–55. http://dx.doi.org/10.1155/2008/747343.

Full text
Abstract:
Transforming growth factor beta (TGF-β) signaling has diverse and complex roles in various biological phenomena such as cell growth, differentiation, embryogenesis and morphogenesis. ES cells provide an essential model for understanding the role of TGF-βsignaling in lineage specification and differentiation. Recent studies have suggested significant role of TGF-βin stem/progenitor cell biology. Here in this review, we focus on the role of the TGF-βsuperfamily in neuronal development.
APA, Harvard, Vancouver, ISO, and other styles
43

Ray, L. Bryan. "Lysosomes keep neuronal stem cells young." Science 359, no. 6381 (March 15, 2018): 1227.8–1228. http://dx.doi.org/10.1126/science.359.6381.1227-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Akaike, Norio, and Shinya Ueno. "Proton-induced current in neuronal cells." Progress in Neurobiology 43, no. 1 (May 1994): 73–83. http://dx.doi.org/10.1016/0301-0082(94)90016-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cattaneo, Elena, and Ron McKay. "Identifying and manipulating neuronal stem cells." Trends in Neurosciences 14, no. 8 (August 1991): 338–40. http://dx.doi.org/10.1016/0166-2236(91)90158-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Klose, Christoph SN, and David Artis. "Neuronal regulation of innate lymphoid cells." Current Opinion in Immunology 56 (February 2019): 94–99. http://dx.doi.org/10.1016/j.coi.2018.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

van Inzen, Wouter G., Maikel P. Peppelenbosch, Maria W. M. van den Brand, Leon G. J. Tertoolen, and Siegfried W. de Laat. "Neuronal differentiation of embryonic stem cells." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1312, no. 1 (June 1996): 21–26. http://dx.doi.org/10.1016/0167-4889(96)00011-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Frederiksen, K., D. Levy, P.-J. Jat, N. Valtz, G. Almazan, and R. McKay. "The immortalization of neuronal precursor cells." Journal of Neuroimmunology 16, no. 1 (September 1987): 2. http://dx.doi.org/10.1016/0165-5728(87)90132-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fischer, Wiebke, Reinhard H. H. Neubert, and Matthias Brandsch. "Clonidine accumulation in human neuronal cells." European Journal of Pharmaceutical Sciences 32, no. 4-5 (December 2007): 291–95. http://dx.doi.org/10.1016/j.ejps.2007.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pozzan, Tullio. "Introduction: Signal transduction in neuronal cells." Seminars in Cell Biology 5, no. 4 (August 1994): 209–10. http://dx.doi.org/10.1006/scel.1994.1026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography