Dissertations / Theses on the topic 'Neuron generation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Neuron generation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Nangla, Jyoti. "The study of neurogenesis in the rodent telencephalon." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325881.
Full textStifani, Nicolas. "Generation of motor neuron diversity in the cervical spinal cord." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106433.
Full textLes motoneurones sont des cellules nerveuses qui ont un rôle primordial : le contrôle de la contraction des muscles. Afin de réaliser des mouvements complexes, les motoneurones doivent conserver l'identité des muscles qu'ils innervent. L'identité des motoneurones de la moelle épinière s'acquière par l'action conjointe et coordonnée de signaux extrinsèques et de facteurs de transcription intracellulaires. Dans ce contexte, l'expression du facteur de transcription, runt-related transcription factor 1 (Runx1), a été étudié. Runx1 est exprimé de façon transitoire durant le développement post-mitotique embryonnaire de certaines populations spécifiques de motoneurones limités aux segments cervicaux de la moelle épinière. L'inactivation de la fonction de Runx1 n'affecte pas la survie de ces motoneurones mais résulte en une diminution de l'expression de certains gènes impliqués spécifiquement dans le développement des motoneurones ainsi qu'à une activation concomitante de l'expression de gènes impliqués exclusivement dans le programme de développement des inter-neurones. À l'inverse l'expression ectopique de Runx1 dans la moelle épinière d'embryons de poulet réprime l'expression de gènes spécifiques aux inter-neurones et stimule le programme de différentiation des motoneurones. L'ensemble de ces résultats suggère que Runx1 est non seulement nécessaire mais également suffisant pour supprimer le programme de différentiation des inter-neurones et promouvoir la maintenance de caractéristiques propres aux motoneurones. Cette thèse fournit une description précise de l'identité des motoneurones durant leur développement. Ces résultats présentent Runx1 comme un acteur important dans la consolidation de l'identité des motoneurones de la moelle épinière et suggèrent que les motoneurones en développement doivent maintenir la répression de l'expression de gènes impliqués dans développement des inter-neurones afin de conserver l'intégrité de leur identité.
Lyon, Alison Nicole. "Generation and Analysis of Motor Neuron Disease Models in Zebrafish." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337276861.
Full textChristou, Yiota Apostolou. "Generation of motor neurons from embryonic stem cells : application in studies of the motor neuron disease mechanism." Thesis, University of Sheffield, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505426.
Full textYoo, Raphael J. "Generation of fibronectin gradients on a patterned surface for neuron growth studies." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, p, 2005. http://proquest.umi.com/pqdweb?did=974436301&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textYang, Yujie. "Analysis of developmental and regenerative spinal motor neuron generation in zebrafish larvae." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/23591.
Full textŠagát, Martin. "Návrh generativní kompetitivní neuronové sítě pro generování umělých EKG záznamů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413114.
Full textMichalikova, Martina. "Mechanisms of spikelet generation in cortical pyramidal neurons." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17753.
Full textSpikelets are transient spike-like depolarizations of small amplitudes that can be measured in somatic intracellular recordings of many neuron types. Pronounced spikelet activity has been demonstrated in cortical pyramidal neurons in vivo (Crochet et al., 2004; Epsztein et al., 2010; Chorev and Brecht, 2012), influencing membrane voltage dynamics including action potential initiation. Nevertheless, the origin of spikelets in these neurons remains elusive. In thi thesis, I used computational modeling to examine the mechanisms of spikelet generation in pyramidal neurons. First, I reviewed the hypotheses previously suggested to explain spikelet origin. I discovered two qualitatively different spikelet types described in the experimental literature. This thesis focuses on the more commonly reported spikelet type, characterized by relatively large amplitudes of up to 20 mV. I found that the properties of these spikelets fit best to an axonal generation mechanism. Second, I explored the hypothesis that somatic spikelets of axonal origin can be evoked with somato-dendritic inputs. I identified the conditions allowing these orthodromic inputs to trigger an action potential at the axon initial segment, which propagates along the axon to the postsynaptic targets, but fails to elicit an action potential in the soma and the dendrites. Third, I simulated extracellular waveforms of action potentials and spikelets and compared them to experimental data (Chorev and Brecht, 2012). This comparison demonstrated that the extracellular waveforms of single-cell spikelets of axonal origin are consistent with the data. Together, my results suggest that spikelets in pyramidal neurons might originate at the axon initial segment within a single cell. Such a mechanism might be a way of reducing the energetic costs associated with the generation of output action potentials. Moreover, it might allow to control the dendritic plasticity by backpropagating action potentials.
Shao, Jie. "Putative Role of Connectivity in the Generation of Spontaneous Bursting Activity in an Excitatory Neuron Population." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5086.
Full textWagner, Justin. "Whole Exome Sequencing to Identify Disease-Causing Mutations in Lower Motor Neuron Disease and Peripheral Neuropathy." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34124.
Full textWang, Ling. "Microchannel enhanced neuron-computer interface: design, fabrication, biophysics of signal generation, signal strength optimization, and its applications to ion-channel screening and basic neuroscience research." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/52810.
Full textIn this present work, we used microfabrication techniques, numerical simulations, electrophysiological experiments to explore the feasibility of enhancing neuron-computer interfaces with microchannels and the biophysics of the signal generation in microchannel devices. We also demonstrate the microchannel can be used as a promising technique for high-throughput automatic ion-channel screening at subcellular level. Finally, a microwell-microchannel enhanced multielectrode array allowing high signal-to-noise ratio (SNR), multi-site recording from the low-density hippocampal neural network in vitro was designed, fabricated and tested. First, we demonstrate using microchannels as a low-cost neuron-electrode interface to support low-complexity, long-term-stable, high SNR extracellular recording of neural activity, with high-throughput potential. Next, the biophysics of the signal generation of microchannel devices was studied by experiments and numerical simulations. Based on the results, we demonstrate and rationalize how channels with a length of 200 μm and channel cross section of 12 μm2 yielded spike sizes in the millivolt range. Despite the low degree of complexity involved in their fabrication and use, microchannel devices provided a single-unit mean SNR of 101 76, which compares favourably with the SNR obtained from recent developments employing CNT-coated electrodes and Si-NWFETs. Moreover, we further demonstrate that the microchannel is a promising technique for high-throughput automatic ion-channel screening at subcellular level: (1) Experimental data and numerical simulations suggest that the recorded signals are only affected by the membrane patches located inside the microchannel or within 100 μm to the microchannel entrances. (2) The mass transfer of chemical compounds in microchannels was analyzed by experiments and FEM simulations. The results show that the microchannel threaded by glial and neural tissue can function as fluid/chemical barrier. Thus chemical compounds can be applied to different subcellular compartments exclusively. Finally, a microwell-microchannel enhanced MEA (MWMC-MEA), with the optimal channel length of 0.3 mm and the optimal intrachannel electrode position of 0.1 mm to the nearest channel entrance, was proposed based on numerical simulation and experiment results. We fabricated a prototype of the MWMCMEA, whose through-hole feature of Polydimethylsiloxane film (PDMS) was micromachined by reactive-ion etching. The low-density culture (57 neurons/mm2) were survived on the MWMC-MEAs for at least 14 days, from which the neuronal signal with the maximum SNR of 142 was obtained.
Almeida, Lirio Onofre Baptista de. "Instrumentação computacional de tempo real integrada para experimentos com o duto óptico da mosca." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-19032013-155627/.
Full textThis work describes the research and development of computational instrumentation to be used in experimental neurobiophysics. The developed electronic modules operate in an integrated manner and are used to generate visual stimuli for invertebrates and capture electrophysiological signals generated by biological systems subjected to sensory stimuli. They are able to provide synchronized stimuli and perform data acquisition of neural signals events to be used for control and analysis of vision experiments with invertebrates at the Laboratory of Neurobiophysics Dipteralab Laboratory, at the IFSC. The integration of electronic instrumentation facilitate its use during experiments allowing, through its monitoring capabilities of the neural data acquisition, the realization of experiments with real time stimuli changes through feedback. The possibility to perform pre-analyses of neural responses in behavioral closed loop experiments is also implemented.
Shmelkov, Konstantin. "Approches pour l'apprentissage incrémental et la génération des images." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM010/document.
Full textThis dissertation explores two related topics in the context of deep learning: incremental learning and image generation. Incremental learning studies training of models with the objective function evolving over time, eg, addition of new categories to a classification task. Image generation seeks to learn a distribution of natural images for generating new images resembling original ones.Incremental learning is a challenging problem due to the phenomenon called catastrophic forgetting: any significant change to the objective during training causes a severe degradation of previously learned knowledge. We present a learning framework to introduce new classes to an object detection network. It is based on the idea of knowledge distillation to counteract catastrophic forgetting effects: fixed copy of the network evaluates old samples and its output is reused in an auxiliary loss to stabilize learning of new classes. Our framework mines these samples of old classes on the fly from incoming images, in contrast to other solutions that keep a subset of samples in memory.On the second topic of image generation, we build on the Generative Adversarial Network (GAN) model. Recently, GANs significantly improved the quality of generated images. However, they suffer from poor coverage of the dataset: while individual samples have great quality, some modes of the original distribution may not be captured. In addition, existing GAN evaluation methods are focused on image quality, and thus do not evaluate how well the dataset is covered, in contrast to the likelihood measure commonly used for generative models. We present two approaches to address these problems.The first method evaluates class-conditional GANs using two complementary measures based on image classification - GAN-train and GAN-test, which approximate recall (diversity) and precision (quality of the image) of GANs respectively. We evaluate several recent GAN approaches based on these two measures, and demonstrate a clear difference in performance. Furthermore, we observe that the increasing difficulty of the dataset, from CIFAR10 over CIFAR100 to ImageNet, shows an inverse correlation with the quality of the GANs, as clearly evident from our measures.Inspired by our study of GAN models, we present a method to explicitly enforce dataset coverage during the GAN training phase. We develop a generative model that combines GAN image quality with VAE architecture in the feature space engendered by a flow-based model Real-NVP. This allows us to evaluate a valid likelihood and simultaneously relax the independence assumption in RGB space which is common for VAEs. We achieve Inception score and FID competitive with state-of-the-art GANs, while maintaining good likelihood for this class of models
Garcia, Torres Douglas. "Generation of Synthetic Data with Generative Adversarial Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254366.
Full textSyftet med syntetisk datagenerering är att tillhandahålla data som inte är verkliga i fall där användningen av reella data på något sätt är begränsad. Till exempel, när det finns behov av större datamängder, när data är känsliga för användning, eller helt enkelt när det är svårt att få tillgång till den verkliga data. Traditionella metoder för syntetiska datagenererande använder tekniker som inte avser att replikera viktiga statistiska egenskaper hos de ursprungliga data. Egenskaper som fördelningen, mönstren eller korrelationen mellan variabler utelämnas ofta. Dessutom kräver de flesta av de befintliga verktygen och metoderna en hel del användardefinierade regler och använder inte avancerade tekniker som Machine Learning eller Deep Learning. Machine Learning är ett innovativt område för artificiell intelligens och datavetenskap som använder statistiska tekniker för att ge datorer möjlighet att lära av data. Deep Learning ett närbesläktat fält baserat på inlärningsdatapresentationer, vilket kan vara användbart för att generera syntetisk data. Denna avhandling fokuserar på en av de mest intressanta och lovande innovationerna från de senaste åren i Machine Learning-samhället: Generative Adversarial Networks. Generative Adversarial Networks är ett tillvägagångssätt för att generera diskret, kontinuerlig eller textsyntetisk data som föreslås, testas, utvärderas och jämförs med en baslinjemetod. Resultaten visar genomförbarheten och visar fördelarna och nackdelarna med att använda denna metod. Trots dess stora efterfrågan på beräkningsresurser kan ett generativt adversarialnätverk skapa generell syntetisk data som bevarar de statistiska egenskaperna hos ett visst dataset.
Cherti, Mehdi. "Deep generative neural networks for novelty generation : a foundational framework, metrics and experiments." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS029/document.
Full textIn recent years, significant advances made in deep neural networks enabled the creation of groundbreaking technologies such as self-driving cars and voice-enabled personal assistants. Almost all successes of deep neural networks are about prediction, whereas the initial breakthroughs came from generative models. Today, although we have very powerful deep generative modeling techniques, these techniques are essentially being used for prediction or for generating known objects (i.e., good quality images of known classes): any generated object that is a priori unknown is considered as a failure mode (Salimans et al., 2016) or as spurious (Bengio et al., 2013b). In other words, when prediction seems to be the only possible objective, novelty is seen as an error that researchers have been trying hard to eliminate. This thesis defends the point of view that, instead of trying to eliminate these novelties, we should study them and the generative potential of deep nets to create useful novelty, especially given the economic and societal importance of creating new objects in contemporary societies. The thesis sets out to study novelty generation in relationship with data-driven knowledge models produced by deep generative neural networks. Our first key contribution is the clarification of the importance of representations and their impact on the kind of novelties that can be generated: a key consequence is that a creative agent might need to rerepresent known objects to access various kinds of novelty. We then demonstrate that traditional objective functions of statistical learning theory, such as maximum likelihood, are not necessarily the best theoretical framework for studying novelty generation. We propose several other alternatives at the conceptual level. A second key result is the confirmation that current models, with traditional objective functions, can indeed generate unknown objects. This also shows that even though objectives like maximum likelihood are designed to eliminate novelty, practical implementations do generate novelty. Through a series of experiments, we study the behavior of these models and the novelty they generate. In particular, we propose a new task setup and metrics for selecting good generative models. Finally, the thesis concludes with a series of experiments clarifying the characteristics of models that can exhibit novelty. Experiments show that sparsity, noise level, and restricting the capacity of the net eliminates novelty and that models that are better at recognizing novelty are also good at generating novelty
Daley, Jr John. "Generating Synthetic Schematics with Generative Adversarial Networks." Thesis, Högskolan Kristianstad, Fakulteten för naturvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20901.
Full textMachado, Lucas Corrêa Netto. "Método de segmentações geométricas sucessivas para treinamento de redes neurais artificiais." Universidade Federal de Juiz de Fora (UFJF), 2013. https://repositorio.ufjf.br/jspui/handle/ufjf/4164.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-25T15:23:10Z (GMT) No. of bitstreams: 1 lucascorreanettomachado.pdf: 1851458 bytes, checksum: 2a8b67f0adf8343c28d4e1121a757f6d (MD5)
Made available in DSpace on 2017-04-25T15:23:10Z (GMT). No. of bitstreams: 1 lucascorreanettomachado.pdf: 1851458 bytes, checksum: 2a8b67f0adf8343c28d4e1121a757f6d (MD5) Previous issue date: 2013-11-22
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Este trabalho apresenta uma técnica para treinamento de Redes Neurais Artificiais (RNA), capaz de obter os parâmetros da rede através dos dados disponíveis para treinamento, sem necessidade de estabelecer a arquitetura da rede a priori, denominado Método de Segmentações Geométricas Sucessivas (MSGS). O MSGS agrupa os dados de cada classe em Hipercaixa (HC) onde cada caixa é alinhada de acordo com os eixos de maior distribuição de seu conjunto de pontos. Sendo as caixas linearmente separáveis, um hiperplano de separação é identificado originando um neurônio. Caso não seja possível a separação por um único hiperplano, uma técnica de quebra é aplicada para dividir os dados em classes menores para obter novas HCs. Para cada subdivisão novos neurônios são adicionados à rede. Os resultados dos testes realizados apontam para um método rápido e com alta taxa de sucesso.
This work presents a technique for Artificial Neural Network (ANN) training, able to get the network parameters from the available data for training, without establishing the network architecture a priori, called Successive Geometric Segmentation Method (SGSM). The SGSM groups the data of each class into hyperboxes (HB) aligned in accordance with the largest axis of its points distribution. If the HB are linearly separable, a separating hyperplane may be identified resulting a neuron. If it is not, a segmentation technique is applied to divide the data into smaller classes for new HB. For each subdivision new neurons are added to the network. The tests show a rapid method with high success rate.
Hayes, John A. "Phenotypic properties and intrinsic currents of neurons involved in the neural generation of mammalian breathing." W&M ScholarWorks, 2007. https://scholarworks.wm.edu/etd/1539623329.
Full textSerene, Stephen Rothrock. "Generative probabilistic models of neuron morphology." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85494.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 40).
Thanks to automation in ultrathin sectioning and confocal and electron microscopy, it is now possible to image large populations of neurons at single-cell resolution. This imaging capability promises to create a new field of neural circuit microanatomy. Three goals of such a field would be to trace multi-cell neural networks, to classify neurons into morphological cell types, and to compare patterns and statistics of connectivity in large networks to meaningful null models. However, those goals raise significant computational challenges. In particular, since neural morphology spans six orders of magnitude in length (roughly 1 nm-1 mm), a spatial hierarchy of representations is needed to capture micron-scale morphological features in nanometer resolution images. For this thesis, I have built and characterized a system that learns such a representation as a Multivariate Hidden Markov Model over skeletonized neurons. I have developed and implemented a maximum likelihood method for learning an HMM over a directed, unrooted tree structure of arbitrary degree. In addition, I have developed and implemented a set of object-oriented data structures to support this HMM, and to produce a directed tree given a division of the leaf nodes into inputs and outputs. Furthermore, I have developed a set of features on which to train the HMM based only on information in the skeletonized neuron, and I have tested this system on a dataset consisting of confocal microscope images of 14 fluorescence-labeled mouse retinal ganglion cells. Additionally, I have developed a system to simulate neurons of varying difficulty for the HMM, and analyzed its performance on those neurons. Finally, I have explored whether the HMMs this system learns could successfully detect errors in simulated and, eventually, neural datasets.
by Stephen Rothrock Serene.
M. Eng.
Nord, Sofia. "Multivariate Time Series Data Generation using Generative Adversarial Networks : Generating Realistic Sensor Time Series Data of Vehicles with an Abnormal Behaviour using TimeGAN." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302644.
Full textNär man applicerar en modell för att utföra en maskininlärningsuppgift, till exempel att förutsäga utfall eller upptäcka avvikelser, är det viktigt med stora dataset för att uppnå hög prestanda, noggrannhet och generalisering. Det är dock inte ovanligt att dataset är små eller obalanserade eftersom insamling av data kan vara svårt, tidskrävande och dyrt. När man vill samla tidsserier från sensorer på fordon är dessa problem närvarande och de kan hindra bilindustrin i dess utveckling. Generering av syntetisk data har blivit ett växande intresse bland forskare inom flera områden som ett sätt att hantera problemen med datainsamling. Bland de metoder som undersökts för att generera data har generative adversarial networks (GANs) blivit ett populärt tillvägagångssätt i forskningsvärlden på grund av dess breda applikationsdomän och dess framgångsrika resultat. Denna avhandling fokuserar på att generera flerdimensionell tidsseriedata som liknar fordonssensoravläsningar av lufttryck i bromssystemet av fordon med onormalt beteende, vilket innebär att det finns ett läckage i systemet. En ny GAN modell kallad TimeGAN tränades för att genera sådan data och utvärderades sedan både kvalitativt och kvantitativt. Två versioner av denna modell testades och jämfördes. De erhållna resultaten visade att båda modellerna lärde sig distributionen och den underliggande informationen inom de olika signalerna i den verkliga datan. Målet med denna avhandling uppnåddes och kan lägga grunden för framtida arbete inom detta område.
Williamson, Richard. "A new generation neural prosthesis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0021/NQ46945.pdf.
Full textParodi, Livia. "Identification of genetic modifiers in Hereditary Spastic Paraplegias due to SPAST/SPG4 mutations Spastic paraplegia due to SPAST mutations is modified by the underlying mutation and sex Hereditary spastic paraplegia: More than an upper motor neuron disease." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS317.
Full textHereditary Spastic Paraplegias (HSPs) are a group of rare, inherited, neurodegenerative disorders that arise following the progressive degeneration of the corticospinal tracts, leading to lower limbs spasticity, the disorder hallmark. HSPs are characterized by an extreme heterogeneity that encompasses both genetic and clinical features, extending to additional disorder’s features, such as age of onset and severity. This phenotypic variability is typically observed among HSP patients carrying pathogenic mutations in SPAST, the most frequently mutated HSP causative gene. After assembling a cohort of 842 SPAST-HSP patients, a combination of different Next Generation Sequencing approaches was used to dig deeper into the causes of the observed heterogeneity, especially focusing on the identification of age of onset genetic modifiers. Sequencing data resulting from Whole Genome Genotyping were used to perform both association and linkage analysis that, combined with RNA sequencing expression data, allowed to identify different candidate variants/genes, potentially acting as SPAST-HSP age of onset modifiers
Rončka, Martin. "Material Artefact Generation." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2019. http://www.nusl.cz/ntk/nusl-399191.
Full textLai, Ka-Hang. "Neural network approaches to caricature generation." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/34440.
Full textVazin, Tandis. "Generation of Dopaminergic Neurons from Human Embryonic Stem Cells." Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9591.
Full textShiraishi, Atsushi. "Generation of thalamic neurons from mouse embryonic stem cells." Kyoto University, 2018. http://hdl.handle.net/2433/230993.
Full textGuzulaitis, Robertas. "The organisation principles of spinal neural network: temporal integration of somatosensory input and distribution of network activity." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130925_093153-76748.
Full textNugaros smegenys gauna somatosensorinę informaciją, ją integruoja ir generuoja motorinius atsakus. Disertacijoje parodoma, kad somatosensorinių įėjimų viršsekundinė laikinė integracija nugaros smegenų neuronų tinkle vyksta ne dėl motorinių neuronų vidinių savybių kitimo. Laikinės integracijos metu padidėja priešmotorinių neuronų aktyvumas ir tai gali lemti informacijos apie somatosensorinį įėjimą saugojimą. Somatosensorinis tylos periodas – tai motorinio aktyvumo slopinimas po skausmingo stimulo. Jis plačiai aprašytas žmonėse, bei taikomas diagnostikoje. Nepaisant plataus taikymo, somatosensorinio tylos periodo mechanizmai nėra ištirti – nebuvo žinoma ar šis motorinio aktyvumo slopinimas vyksta slopinant motorinius neuronus, ar eliminuojant motorinių neuronų žadinimą. Disertacijoje parodoma, kad somatosensorinio tylos periodo metu motoriniai neuronai yra slopinami. Be somatosensorinės informacijos apdorojimo nugaros smegenų neuronų tinklai užtikrina judėjimo ir refleksų valdymą. Yra priimta, kad priekines ir užpakalines galūnes valdantys neuronų tinklai išsidėstę atitinkamai nugaros smegenų kaklinės ir strėnų sričių išplatėjimuose. Disertacijoje parodoma, kad ir krūtininiai nugaros smegenų segmentai prisideda prie užpakalinių galūnių motorinio aktyvumo generavimo. Tai leidžia manyti, kad neuronų tinklas generuojantis judesius yra išplitęs labiau, nei manyta iki šiol.
Guzulaitis, Robertas. "Nugaros smegenų neuronų tinklo veikimo principai: somatosensorinės informacijos integracija ir aktyvumo išplitimas." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130925_093406-59707.
Full textSpinal cord integrates somatosensory information and generates coordinated motor responses. Temporal integration can be used for discrimination of important stimuli from noise. Here it is shown that temporal integration of somatosensory inputs in sub second time scale is possible without changes of intrinsic properties of motoneurons. The activity of premotor neurons increases during temporal integration and can be a mechanism for short term information storage in spinal cord. Suppression of motor activity after painful somatosensory stimulus is called cutaneous silent period. This motor suppression is well described in humans and used for diagnostics. However it is not known if the suppression of motor activity is due to inhibition of motoneurons or reduction of excitatory drive from premotor neurons. Here it is shown that motoneurons are inhibited during cutaneous silent period. Neural networks of spinal cord not only process somatosensory information but generate locomotion and reflexes too. It is accepted that neural networks controlling front and hind limb movements are located in cervical and lumbar enlargements respectfully. Here it is shown that thoracic segments of spinal cord contribute to hind limb movements as well. It means that neural network generating movements is much more widely distributed than previously thought.
Chuong, Amy (Amy S. ). "Development of next-generation optical neural silencers." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69521.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 65-74).
The ability to rapidly and safely silence the electrical activity of individual neurons or neuron populations is invaluable in the study of brain circuit mapping. The expression of light-driven ion channels and pumps allows these pathways to be observed, mapped and controlled with millisecond timescale resolution. We here show that it is possible to mediate the powerful multiple-color silencing of neural activity through the heterologous expression of light-driven outward proton pumps and inward chloride pumps. We characterized a number of novel opsins through an exploration of ecological and genomic diversity, and further boosted opsin function and trafficking through the appendage of signal sequences. The green-light drivable archaerhodopsin-3 (Arch) from Halorubrum sodomense and the yellow-light drivable archaerhodopsin from Halorubrum strain TP009 (ArchT) are able to mediate complete neuron silencing in the in vivo awake mouse brain, and the blue-light drivable proton pump from Leptosphaeria maculans (Mac) opens up the potential for the multiple-color control of independent neuron populations. Finally, the principles outlined here can be extrapolated to the larger context of synthetic physiology.
by Amy Chuong.
S.M.
Noakes, Zoe. "Generation of functional striatal neurons from human pluripotent stem cells." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/98932/.
Full textArber, Charles. "Generation of disease-relevant neurons from human pluripotent stem cells." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/14670.
Full textPatani, Rickie. "Generating motor neuron subtype diversity from human pluripotent stem cells." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610349.
Full textLewis, John E. "Dynamics of neural networks and respiratory rhythm generation." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60568.
Full textWe consider the dynamical properties of a class of theoretical models of neural networks that have the same mathematical formulation as the above three-phase model, but consist of a larger number of randomly connected elements. A simple transformation of these models shows correspondence with previous neural network models and enables a theoretical analysis of steady states and cycles. Complex aperiodic dynamics are found in networks consisting of 6 or more elements.
Dowrick, Thomas Martin. "Biologically motivated circuits for third generation neural networks." Thesis, University of Liverpool, 2011. http://livrepository.liverpool.ac.uk/3024754/.
Full textWen, Tsung-Hsien. "Recurrent neural network language generation for dialogue systems." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275648.
Full textJasieczek, Christina Bozena. "Investigation of hydrogen bonding and SHG activity of organic salts and co-crystals." Thesis, University of Sussex, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318504.
Full textKalainathan, Diviyan. "Generative Neural Networks to infer Causal Mechanisms : algorithms and applications." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS516.
Full textCausal discovery is of utmost importance for agents who must plan, reason and decide based on observations; where mistaking correlation with causation might lead to unwanted consequences. The gold standard to discover causal relations is to perform experiments.However, experiments are in many cases expensive, unethical, or impossible to realize. In these situations, there is a need for observational causal discovery, that is, the estimation of causal relations from observations alone.Causal discovery in the observational data setting traditionally involves making significant assumptions on the data and on the underlying causal model.This thesis aims to alleviate some of the assumptions made on the causal models by exploiting the modularity and expressiveness of neural networks for causal discovery, leveraging both conditional independences and simplicity of the causal mechanisms through two algorithms.Extensive experiments on both simulated and real-world data and a throughout theoretical anaylsis prove the good performance and the soundness of the proposed approaches
Bahreininejad, Ardeshir. "Artificial neural networks for parallel finite element computations." Thesis, Heriot-Watt University, 1996. http://hdl.handle.net/10399/707.
Full textHatami, Maryam [Verfasser], and Thomas [Akademischer Betreuer] Skutella. "Combination of Prox1/NeuroD1 Transcription Factor Overexpression Boosts Generation of Dentate Gyrus Granule Neurons from Pluripotent Stem Cells / Maryam Hatami ; Betreuer: Thomas Skutella." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177386011/34.
Full textCasas, Manzanares Noé. "Injection of linguistic knowledge into neural text generation models." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/671045.
Full textEl lenguaje es una construcción orgánica que surge de la necesidad de comunicación, y que cambia a lo largo del tiempo, influenciado por múltiples factores, resultando en estructuras del lenguaje donde se mezclan construcciones morfológicas y sintácticas regulares con otros elementos irregulares. La lingüística tiene como objetivo el formalizar estas estructuras, proponiendo interpretaciones de los fenómenos subyacentes. Sin embargo, la lingüística no es suficiente para caracterizar de manera completa las estructuras del lenguaje, ya que éstas se encuentran intrínsicamente ligadas tanto al significado -al restringir y modular éste la aplicabilidad de los fenómenos lingüísticos- como al contexto y al dominio. Las técnicas de traducción automática clásicas empleadas por los sistemas basados en reglas, se basan en formalismos lingüísticos, haciendo uso de miles de reglas morfológicas y gramaticales para analizar texto del idioma de origen y traducirlo al idioma de destino, intentando mantener la carga semántica original. Aunque este tipo de traducción procesa adecuadamente la estructuras de bajo nivel del lenguaje, muchas estructuras dependientes del significado no son analizadas correctamente. Los sistemas de procesado del lenguaje natural dominantes, en cambio, se entrenan usando texto como datos de entrada. Dicho texto se procesa como una secuencia de elementos discretos, normalmente definidos como trozos de palabras o sub-palabras, que se agrupan en una estructura de diccionario que es confecccionado estadísticamente de modo que se maximice el reuso de sus sub-palabras al codificar el texto de entrenamiento. En todo este proceso, no hay ninguna noción explícita de conocimiento lingüístico, ni morfemas, ni información morfológica, ni relaciones sintácticas entre palabras o grupos jerárquicos. El objetivo de esta tesis es hibridizar los sistemas neuronales y los sistemas basados en reglas lingüísticas, de manera que el resultado pueda mostrar la flexibilidad y buenos resultados de los primeros, pero teniendo una base lingüística que le permita tanto mejorar la calidad del texto generado en los casos en los que simplemente más datos no lo consiguen, como establer unas dinámicas de funcionamiento internas que sean entendibles por humanos, a diferencia de la naturaleza de "caja negra" de los sistemas neuronales normales. Para ello, se proponen técnicas para enriqueces las sub-palabras con información lingüística de nivel de palabra, ténicas para prescindir de las sub-palabras y basarse únicamente en el lema y los rasgos lingüísticos de las palabras, y técnicas para dirigir el orden de generación de texto mediante dependencias sintácticas. Los principales resultados de los métodos propuestos son la mejora en la calidad de traducción en sistemas neuronales a los que les inyectamos información lingüística, especialmente en escenarios de lenguas morfológicamente ricas con texto de distinto dominio, y el control directo del proceso de generación al ligarlo a las estructuras sintácticas del texto.
Ellerbrock, Thomas M. "Multilayer neural networks learnability, network generation, and network simplification /." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=958467897.
Full textVougiouklis, Pavlos. "Neural generation of textual summaries from knowledge base triples." Thesis, University of Southampton, 2019. https://eprints.soton.ac.uk/428045/.
Full textZhang, Xingxing. "Natural language generation as neural sequence learning and beyond." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28930.
Full textKhan, Muhammad Jazib. "Programmable Address Generation Unit for Deep Neural Network Accelerators." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-271884.
Full textConvolutional Neural Networks blir mer och mer populära på grund av deras applikationer inom revolutionerande tekniker som autonom körning, biomedicinsk bildbehandling och naturligt språkbearbetning. Med denna ökning av antagandet ökar också komplexiteten hos underliggande algoritmer. Detta medför implikationer för beräkningsplattformarna såväl som GPU: er, FPGAeller ASIC-baserade acceleratorer, särskilt för Adressgenerationsenheten (AGU) som är ansvarig för minnesåtkomst. Befintliga acceleratorer har normalt Parametrizable Datapath AGU: er som har mycket begränsad anpassningsförmåga till utveckling i algoritmer. Därför krävs ny hårdvara för nya algoritmer, vilket är en mycket ineffektiv metod när det gäller tid, resurser och återanvändbarhet. I denna forskning utvärderas sex algoritmer med olika implikationer för hårdvara för adressgenerering och en helt programmerbar AGU (PAGU) presenteras som kan anpassa sig till dessa algoritmer. Dessa algoritmer är Standard, Strided, Dilated, Upsampled och Padded convolution och MaxPooling. Den föreslagna AGU-arkitekturen är en Very Long Instruction Word-baserad applikationsspecifik instruktionsprocessor som har specialiserade komponenter som hårdvara räknare och noll-overhead-slingor och en kraftfull Instruktionsuppsättning Arkitektur (ISA) som kan modellera statiska och dynamiska begränsningar och affinera och icke-affinerad adress ekvationer. Målet har varit att minimera flexibiliteten kontra avvägning av område, kraft och prestanda. För ett fungerande testnätverk av semantisk segmentering har resultaten visat att PAGU visar nära den perfekta prestanda, 1 cykel per adress, för alla algoritmer som beaktas undantar Upsampled Convolution för vilken det är 1,7 cykler per adress. Området för PAGU är ungefär 4,6 gånger större än Parametrizable Datapath-metoden, vilket fortfarande är rimligt med tanke på de stora flexibilitetsfördelarna. Potentialen för PAGU är inte bara begränsad till neurala nätverksapplikationer utan också i mer allmänna digitala signalbehandlingsområden som kan utforskas i framtiden.
Friel, Ruairi Donal. "The generation of a herpes simplex virus vector to target motor neurons." Thesis, University of Glasgow, 2001. http://theses.gla.ac.uk/3960/.
Full textBrown, Sarah. "Adult generation of dopaminergic neurons in a genetic model of Parkinson's disease." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/21269/.
Full textPace, Ryland Weed. "Mechanisms underlying inspiratory burst generation in preBotzinger complex neurons of neonatal mice." W&M ScholarWorks, 2008. https://scholarworks.wm.edu/etd/1539616802.
Full textSoofi, Wafa Ahmed. "Regulation of rhythmic activity in the stomatogastric ganglion of decapod crustaceans." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53440.
Full textStigeborn, Patrik. "Generating 3D-objects using neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230668.
Full textLiu, Mengxin. "Generative Neural Network for Portfolio Optimization." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-53027.
Full text