Academic literature on the topic 'Neuron generation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neuron generation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Neuron generation"
Sarafi-Reinach, Trina R., Tali Melkman, Oliver Hobert, and Piali Sengupta. "The lin-11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans." Development 128, no. 17 (September 1, 2001): 3269–81. http://dx.doi.org/10.1242/dev.128.17.3269.
Full textVan de Bittner, Genevieve C., Misha M. Riley, Luxiang Cao, Janina Ehses, Scott P. Herrick, Emily L. Ricq, Hsiao-Ying Wey, et al. "Nasal neuron PET imaging quantifies neuron generation and degeneration." Journal of Clinical Investigation 127, no. 2 (January 23, 2017): 681–94. http://dx.doi.org/10.1172/jci89162.
Full textTorben-Nielsen, Ben, Karl Tuyls, and Eric Postma. "EvOL-Neuron: Neuronal morphology generation." Neurocomputing 71, no. 4-6 (January 2008): 963–72. http://dx.doi.org/10.1016/j.neucom.2007.02.016.
Full textEnsini, M., T. N. Tsuchida, H. G. Belting, and T. M. Jessell. "The control of rostrocaudal pattern in the developing spinal cord: specification of motor neuron subtype identity is initiated by signals from paraxial mesoderm." Development 125, no. 6 (March 15, 1998): 969–82. http://dx.doi.org/10.1242/dev.125.6.969.
Full textMcKenna, William L., Christian F. Ortiz-Londono, Thomas K. Mathew, Kendy Hoang, Sol Katzman, and Bin Chen. "Mutual regulation between Satb2 and Fezf2 promotes subcerebral projection neuron identity in the developing cerebral cortex." Proceedings of the National Academy of Sciences 112, no. 37 (August 31, 2015): 11702–7. http://dx.doi.org/10.1073/pnas.1504144112.
Full textWANG, LEI, PEI-JI LIANG, PU-MING ZHANG, and YI-HONG QIU. "ADAPTATION-DEPENDENT SYNCHRONIZATION TRANSITIONS AND BURST GENERATIONS IN ELECTRICALLY COUPLED NEURAL NETWORKS." International Journal of Neural Systems 24, no. 08 (November 20, 2014): 1450033. http://dx.doi.org/10.1142/s0129065714500336.
Full textAbbott, L. F., E. Marder, and S. L. Hooper. "Oscillating Networks: Control of Burst Duration by Electrically Coupled Neurons." Neural Computation 3, no. 4 (December 1991): 487–97. http://dx.doi.org/10.1162/neco.1991.3.4.487.
Full textGawthrop, Charles Stroud, Kavitha Challagulla, Annette Vu, Lynne Bianchi, Kate F. Barald, and John A. Germiller. "R440 – Generation of Neuron-Like Cells in Spiral Ganglion Cultures." Otolaryngology–Head and Neck Surgery 139, no. 2_suppl (August 2008): P191—P192. http://dx.doi.org/10.1016/j.otohns.2008.05.596.
Full textClarkson, Jenny, Su Young Han, Richard Piet, Timothy McLennan, Grace M. Kane, Jamie Ng, Robert W. Porteous, et al. "Definition of the hypothalamic GnRH pulse generator in mice." Proceedings of the National Academy of Sciences 114, no. 47 (November 6, 2017): E10216—E10223. http://dx.doi.org/10.1073/pnas.1713897114.
Full textMartinez-Morales, J. R., J. A. Barbas, E. Marti, P. Bovolenta, D. Edgar, and A. Rodriguez-Tebar. "Vitronectin is expressed in the ventral region of the neural tube and promotes the differentiation of motor neurons." Development 124, no. 24 (December 15, 1997): 5139–47. http://dx.doi.org/10.1242/dev.124.24.5139.
Full textDissertations / Theses on the topic "Neuron generation"
Nangla, Jyoti. "The study of neurogenesis in the rodent telencephalon." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325881.
Full textStifani, Nicolas. "Generation of motor neuron diversity in the cervical spinal cord." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106433.
Full textLes motoneurones sont des cellules nerveuses qui ont un rôle primordial : le contrôle de la contraction des muscles. Afin de réaliser des mouvements complexes, les motoneurones doivent conserver l'identité des muscles qu'ils innervent. L'identité des motoneurones de la moelle épinière s'acquière par l'action conjointe et coordonnée de signaux extrinsèques et de facteurs de transcription intracellulaires. Dans ce contexte, l'expression du facteur de transcription, runt-related transcription factor 1 (Runx1), a été étudié. Runx1 est exprimé de façon transitoire durant le développement post-mitotique embryonnaire de certaines populations spécifiques de motoneurones limités aux segments cervicaux de la moelle épinière. L'inactivation de la fonction de Runx1 n'affecte pas la survie de ces motoneurones mais résulte en une diminution de l'expression de certains gènes impliqués spécifiquement dans le développement des motoneurones ainsi qu'à une activation concomitante de l'expression de gènes impliqués exclusivement dans le programme de développement des inter-neurones. À l'inverse l'expression ectopique de Runx1 dans la moelle épinière d'embryons de poulet réprime l'expression de gènes spécifiques aux inter-neurones et stimule le programme de différentiation des motoneurones. L'ensemble de ces résultats suggère que Runx1 est non seulement nécessaire mais également suffisant pour supprimer le programme de différentiation des inter-neurones et promouvoir la maintenance de caractéristiques propres aux motoneurones. Cette thèse fournit une description précise de l'identité des motoneurones durant leur développement. Ces résultats présentent Runx1 comme un acteur important dans la consolidation de l'identité des motoneurones de la moelle épinière et suggèrent que les motoneurones en développement doivent maintenir la répression de l'expression de gènes impliqués dans développement des inter-neurones afin de conserver l'intégrité de leur identité.
Lyon, Alison Nicole. "Generation and Analysis of Motor Neuron Disease Models in Zebrafish." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337276861.
Full textChristou, Yiota Apostolou. "Generation of motor neurons from embryonic stem cells : application in studies of the motor neuron disease mechanism." Thesis, University of Sheffield, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505426.
Full textYoo, Raphael J. "Generation of fibronectin gradients on a patterned surface for neuron growth studies." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, p, 2005. http://proquest.umi.com/pqdweb?did=974436301&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textYang, Yujie. "Analysis of developmental and regenerative spinal motor neuron generation in zebrafish larvae." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/23591.
Full textŠagát, Martin. "Návrh generativní kompetitivní neuronové sítě pro generování umělých EKG záznamů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413114.
Full textMichalikova, Martina. "Mechanisms of spikelet generation in cortical pyramidal neurons." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17753.
Full textSpikelets are transient spike-like depolarizations of small amplitudes that can be measured in somatic intracellular recordings of many neuron types. Pronounced spikelet activity has been demonstrated in cortical pyramidal neurons in vivo (Crochet et al., 2004; Epsztein et al., 2010; Chorev and Brecht, 2012), influencing membrane voltage dynamics including action potential initiation. Nevertheless, the origin of spikelets in these neurons remains elusive. In thi thesis, I used computational modeling to examine the mechanisms of spikelet generation in pyramidal neurons. First, I reviewed the hypotheses previously suggested to explain spikelet origin. I discovered two qualitatively different spikelet types described in the experimental literature. This thesis focuses on the more commonly reported spikelet type, characterized by relatively large amplitudes of up to 20 mV. I found that the properties of these spikelets fit best to an axonal generation mechanism. Second, I explored the hypothesis that somatic spikelets of axonal origin can be evoked with somato-dendritic inputs. I identified the conditions allowing these orthodromic inputs to trigger an action potential at the axon initial segment, which propagates along the axon to the postsynaptic targets, but fails to elicit an action potential in the soma and the dendrites. Third, I simulated extracellular waveforms of action potentials and spikelets and compared them to experimental data (Chorev and Brecht, 2012). This comparison demonstrated that the extracellular waveforms of single-cell spikelets of axonal origin are consistent with the data. Together, my results suggest that spikelets in pyramidal neurons might originate at the axon initial segment within a single cell. Such a mechanism might be a way of reducing the energetic costs associated with the generation of output action potentials. Moreover, it might allow to control the dendritic plasticity by backpropagating action potentials.
Shao, Jie. "Putative Role of Connectivity in the Generation of Spontaneous Bursting Activity in an Excitatory Neuron Population." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5086.
Full textWagner, Justin. "Whole Exome Sequencing to Identify Disease-Causing Mutations in Lower Motor Neuron Disease and Peripheral Neuropathy." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34124.
Full textBooks on the topic "Neuron generation"
Konieczny, Marek A. Generation of neutron kerma factors from double-differential neutron data. Birmingham: University of Birmingham, 1991.
Find full textKumar, Das Basanta. Development of compact D-D neutron generator. Mumbai, India: Bhabha Atomic Research Centre, 2011.
Find full textSouček, Branko. Neural and massively parallel computers: The sixth generation. New York: Wiley, 1988.
Find full textSouc̆ek, Branko. Neural and concurrent real-time systems: The sixth generation. New York: Wiley, 1989.
Find full textC, Jain L., and Johnson R. P, eds. Automatic generation of neural network architecture using evolutionary computation. Singapore: World Scientific, 1997.
Find full textNeural and concurrent real-time systems: The sixth generation. New York: Wiley, 1989.
Find full textGusmão, António, Nuno Horta, Nuno Lourenço, and Ricardo Martins. Analog IC Placement Generation via Neural Networks from Unlabeled Data. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50061-0.
Full textGroup, IRIS, ed. Neural and intelligent systems integration: Fifth and sixth generation integrated reasoning information systems. New York: Wiley, 1991.
Find full textImmer wieder Familie: Familien- und Generationenromane in der neueren Literatur. Innsbruck: StudienVerlag, 2012.
Find full textThe informational complexity of learning: Perspectives on neural networks and generative grammar. Boston: Kluwer Academic Publishers, 1998.
Find full textBook chapters on the topic "Neuron generation"
Goodman, Robert L., Satoshi Okhura, Hiroaki Okamura, Lique M. Coolen, and Michael N. Lehman. "KNDy Hypothesis for Generation of GnRH Pulses: Evidence from Sheep and Goats." In The GnRH Neuron and its Control, 289–324. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119233275.ch12.
Full textAbrecht, Stephanie, Maram Akila, Sujan Sai Gannamaneni, Konrad Groh, Christian Heinzemann, Sebastian Houben, and Matthias Woehrle. "Revisiting Neuron Coverage and Its Application to Test Generation." In Computer Safety, Reliability, and Security. SAFECOMP 2020 Workshops, 289–301. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55583-2_21.
Full textClarke, Iain. "Generation of the GnRH Surge and LH Surge by the Positive Feedback Effect of Estrogen." In The GnRH Neuron and its Control, 325–56. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119233275.ch13.
Full textSun, Jinsheng, and Moshe Zukerman. "An Adaptive Neuron AQM for a Stable Internet." In NETWORKING 2007. Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet, 844–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72606-7_72.
Full textBurg, Thomas, and Nadine Tschichold-Gürman. "An extended neuron model for efficient timeseries generation and prediction." In Lecture Notes in Computer Science, 1005–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0020284.
Full textLópez-Torres, M. R., F. Diaz-del-Rio, M. Domínguez-Morales, G. Jimenez-Moreno, and A. Linares-Barranco. "AER Spiking Neuron Computation on GPUs: The Frame-to-AER Generation." In Neural Information Processing, 199–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24955-6_24.
Full textMcCrimmon, Donald R., Armelle Monnier, Krzysztof Ptak, Greer Zummo, Zhong Zhang, and George F. Alheid. "Respiratory Rhythm Generation: Prebötzinger Neuron Discharge Patterns and Persistent Sodium Current." In Advances in Experimental Medicine and Biology, 147–52. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1375-9_23.
Full textVellasco, Marley M. B. R., and Philip C. Treleaven. "The generic neuron architectural framework for the automatic generation of ASICs." In New Trends in Neural Computation, 476–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-56798-4_191.
Full textKamada, Shin, and Takumi Ichimura. "A Structural Learning Method of Restricted Boltzmann Machine by Neuron Generation and Annihilation Algorithm." In Neural Information Processing, 372–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46681-1_45.
Full textKarl, Mike O., and Thomas A. Reh. "Studying the Generation of Regenerated Retinal Neuron from Müller Glia in the Mouse Eye." In Retinal Development, 213–27. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-848-1_15.
Full textConference papers on the topic "Neuron generation"
Basu, Saurav, Alla Aksel, Barry Condron, and Scott T. Acton. "Tree2Tree: Neuron segmentation for generation of neuronal morphology." In 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2010. http://dx.doi.org/10.1109/isbi.2010.5490289.
Full textQi Chunqing, Yang Yong, and Suo Ji. "Single neuron controller of VSCF wind power generation system." In 2009 International Conference on Mechatronics and Automation (ICMA). IEEE, 2009. http://dx.doi.org/10.1109/icma.2009.5246509.
Full textYang, Yanling, Yang Deng, Xueyan Xiong, Binglei Shi, Li Ge, and Jiagui Wu. "Neuron-Like Optical Spiking Generation Based on Silicon Microcavity." In 2020 IEEE 20th International Conference on Communication Technology (ICCT). IEEE, 2020. http://dx.doi.org/10.1109/icct50939.2020.9295847.
Full textDeHaven, J. G., Y. Han, and H. S. Tzou. "Transition of Neural Signals on Cylindrical Shells With Various Curvatures." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85153.
Full textLidan Wang, Shukai Duan, and Xiaofan Yang. "Generation of delayed chaotic neuron with an axisymmetric activation function." In 2008 7th World Congress on Intelligent Control and Automation. IEEE, 2008. http://dx.doi.org/10.1109/wcica.2008.4593080.
Full textChen, Yajie, Steve Hall, Liam Mcdaid, Octavian Buiu, and Peter Kelly. "A Solid State Neuron for the Realisation of Highly Scaleable Third Generation Neural Networks." In 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/icsict.2006.306684.
Full textWang, Lidan, and Shukai Duan. "Generation and Circuitry Implementation of an N-Double Scroll Delayed Chaotic Neuron." In 2008 Fourth International Conference on Natural Computation. IEEE, 2008. http://dx.doi.org/10.1109/icnc.2008.858.
Full textTzou, H. S., and J. H. Ding. "Spatially Distributed Signals of Nonlinear Paraboloidal Shells With Distributed Neurons." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21545.
Full textKamada, Shin, and Takumi Ichimura. "An adaptive learning method of Restricted Boltzmann Machine by neuron generation and annihilation algorithm." In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2016. http://dx.doi.org/10.1109/smc.2016.7844417.
Full textDineva, Adrienn, Jozsef K. Tar, and Annamaria Varkonyi-Koczy. "Novel Generation of Fixed Point Transformation for the Adaptive Control of a Nonlinear Neuron Model." In 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2015. http://dx.doi.org/10.1109/smc.2015.179.
Full textReports on the topic "Neuron generation"
Gomes, I. Analysis of the neutron generation from a D-Li neutron source. Office of Scientific and Technical Information (OSTI), February 1994. http://dx.doi.org/10.2172/10146761.
Full textFlaska, Marek, and Kenan Unlu. Versatile D-T Neutron-Generation System for Fast-Neutron Research and Education. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1494839.
Full textBange, Marilyn S. PHS Neutron Generator Monitor Laboratory. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1481625.
Full textCai-Lin Wang. NEXT GENERATION NEUTRON SCINTILLATORS BASED ON SEMICONDUCTOR NANOSTRUCTURES. Office of Scientific and Technical Information (OSTI), June 2008. http://dx.doi.org/10.2172/948092.
Full textBruss, Donald, and Lawrence Sanchez. Multigroup Neutron Cross Section Generation for the SCEPTRE Code. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1762680.
Full textDesimone, David J., and Martyn T. Swinhoe. Absolute Neutron Flux Measurements of a D-T Neutron Generator. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1072233.
Full textKerr, P., N. Cherepy, J. Hall, J. Church, G. Guethlein, S. ONeal, C. McNamee, et al. Neutron Transmission Imaging with a Portable D-T Neutron Generator. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1814672.
Full textLeung, Ka-Ngo, Daniel Morse, Allan Chen, Paul Hausladen, J. Felix Liang, and John S. Neal. ADVANCED NEUTRON GENERATOR FOR SNM IMAGING. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1097494.
Full textJerng, D. W., and J. M. Carpenter. Heat generation and neutron beam characteristics in a high power pulsed spallation neutron source. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/396586.
Full textDawn, William C., Javier Ortensi, Mark D. DeHart, and Scott P. Palmtag. Comparison of Generation of Higher-Order Neutron Scattering Cross Sections. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1593864.
Full text