Journal articles on the topic 'Neuromorphic devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Neuromorphic devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ielmini, Daniele, and Stefano Ambrogio. "Emerging neuromorphic devices." Nanotechnology 31, no. 9 (December 9, 2019): 092001. http://dx.doi.org/10.1088/1361-6528/ab554b.
Full textGuo, Zhonghao. "Synaptic device-based neuromorphic computing in artificial intelligence." Applied and Computational Engineering 65, no. 1 (May 23, 2024): 253–59. http://dx.doi.org/10.54254/2755-2721/65/20240511.
Full textPark, Jisoo, Jihyun Shin, and Hocheon Yoo. "Heterostructure-Based Optoelectronic Neuromorphic Devices." Electronics 13, no. 6 (March 14, 2024): 1076. http://dx.doi.org/10.3390/electronics13061076.
Full textHuang, Wen, Huixing Zhang, Zhengjian Lin, Pengjie Hang, and Xing’ao Li. "Transistor-Based Synaptic Devices for Neuromorphic Computing." Crystals 14, no. 1 (January 9, 2024): 69. http://dx.doi.org/10.3390/cryst14010069.
Full textLim, Jung Wook, Su Jae Heo, Min A. Park, and Jieun Kim. "Synaptic Transistors Exhibiting Gate-Pulse-Driven, Metal-Semiconductor Transition of Conduction." Materials 14, no. 24 (December 7, 2021): 7508. http://dx.doi.org/10.3390/ma14247508.
Full textDiao, Yu, Yaoxuan Zhang, Yanran Li, and Jie Jiang. "Metal-Oxide Heterojunction: From Material Process to Neuromorphic Applications." Sensors 23, no. 24 (December 12, 2023): 9779. http://dx.doi.org/10.3390/s23249779.
Full textFeng, Chenyin, Wenwei Wu, Huidi Liu, Junke Wang, Houzhao Wan, Guokun Ma, and Hao Wang. "Emerging Opportunities for 2D Materials in Neuromorphic Computing." Nanomaterials 13, no. 19 (October 7, 2023): 2720. http://dx.doi.org/10.3390/nano13192720.
Full textKim, Dongshin, Ik-Jyae Kim, and Jang-Sik Lee. "Memory Devices for Flexible and Neuromorphic Device Applications." Advanced Intelligent Systems 3, no. 5 (January 25, 2021): 2000206. http://dx.doi.org/10.1002/aisy.202000206.
Full textHuang, Yi, Fatemeh Kiani, Fan Ye, and Qiangfei Xia. "From memristive devices to neuromorphic systems." Applied Physics Letters 122, no. 11 (March 13, 2023): 110501. http://dx.doi.org/10.1063/5.0133044.
Full textMachado, Pau, Salvador Manich, Álvaro Gómez-Pau, Rosa Rodríguez-Montañés, Mireia Bargalló González, Francesca Campabadal, and Daniel Arumí. "Programming Techniques of Resistive Random-Access Memory Devices for Neuromorphic Computing." Electronics 12, no. 23 (November 27, 2023): 4803. http://dx.doi.org/10.3390/electronics12234803.
Full textGumyusenge, Aristide, Armantas Melianas, Scott T. Keene, and Alberto Salleo. "Materials Strategies for Organic Neuromorphic Devices." Annual Review of Materials Research 51, no. 1 (July 26, 2021): 47–71. http://dx.doi.org/10.1146/annurev-matsci-080619-111402.
Full textMilo, Valerio, Gerardo Malavena, Christian Monzio Compagnoni, and Daniele Ielmini. "Memristive and CMOS Devices for Neuromorphic Computing." Materials 13, no. 1 (January 1, 2020): 166. http://dx.doi.org/10.3390/ma13010166.
Full textWu, Yuting, Xinxin Wang, and Wei D. Lu. "Dynamic resistive switching devices for neuromorphic computing." Semiconductor Science and Technology 37, no. 2 (December 29, 2021): 024003. http://dx.doi.org/10.1088/1361-6641/ac41e4.
Full textYou Zhou and Shriram Ramanathan. "Mott Memory and Neuromorphic Devices." Proceedings of the IEEE 103, no. 8 (August 2015): 1289–310. http://dx.doi.org/10.1109/jproc.2015.2431914.
Full textZhao, Qing-Tai, Fengben Xi, Yi Han, Andreas Grenmyr, Jin Hee Bae, and Detlev Gruetzmacher. "Ferroelectric Devices for Neuromorphic Computing." ECS Meeting Abstracts MA2022-02, no. 32 (October 9, 2022): 1183. http://dx.doi.org/10.1149/ma2022-02321183mtgabs.
Full textYan, Yujie, Xiaomin Wu, Qizhen Chen, Xiumei Wang, Enlong Li, Yuan Liu, Huipeng Chen, and Tailiang Guo. "An intrinsically healing artificial neuromorphic device." Journal of Materials Chemistry C 8, no. 20 (2020): 6869–76. http://dx.doi.org/10.1039/d0tc00726a.
Full textJué, Emilie, Matthew R. Pufall, Ian W. Haygood, William H. Rippard, and Michael L. Schneider. "Perspectives on nanoclustered magnetic Josephson junctions as artificial synapses." Applied Physics Letters 121, no. 24 (December 12, 2022): 240501. http://dx.doi.org/10.1063/5.0118287.
Full textLin, Xinhuang, Haotian Long, Shuo Ke, Yuyuan Wang, Ying Zhu, Chunsheng Chen, Changjin Wan, and Qing Wan. "Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding." Chinese Physics Letters 39, no. 6 (June 1, 2022): 068501. http://dx.doi.org/10.1088/0256-307x/39/6/068501.
Full textLee, Jae-Eun, Chuljun Lee, Dong-Wook Kim, Daeseok Lee, and Young-Ho Seo. "An On-Chip Learning Method for Neuromorphic Systems Based on Non-Ideal Synapse Devices." Electronics 9, no. 11 (November 18, 2020): 1946. http://dx.doi.org/10.3390/electronics9111946.
Full textChen, Chao, Tao Lin, Jianteng Niu, Yiming Sun, Liu Yang, Wang Kang, and Na Lei. "Surface acoustic wave controlled skyrmion-based synapse devices." Nanotechnology 33, no. 11 (December 23, 2021): 115205. http://dx.doi.org/10.1088/1361-6528/ac3f14.
Full textGonzález Sopeña, Juan Manuel, Vikram Pakrashi, and Bidisha Ghosh. "A Spiking Neural Network Based Wind Power Forecasting Model for Neuromorphic Devices." Energies 15, no. 19 (October 2, 2022): 7256. http://dx.doi.org/10.3390/en15197256.
Full textPark, Jaeyoung. "Neuromorphic Computing Using Emerging Synaptic Devices: A Retrospective Summary and an Outlook." Electronics 9, no. 9 (September 1, 2020): 1414. http://dx.doi.org/10.3390/electronics9091414.
Full textChen, An, Stefano Ambrogio, Pritish Narayanan, Atsuya Okazaki, Hsinyu Tsai, Kohji Hosokawa, Charles Mackin, et al. "(Invited) Emerging Nonvolatile Memories for Analog Neuromorphic Computing." ECS Meeting Abstracts MA2024-01, no. 21 (August 9, 2024): 1293. http://dx.doi.org/10.1149/ma2024-01211293mtgabs.
Full textAlialy, Sahar, Koorosh Esteki, Mauro S. Ferreira, John J. Boland, and Claudia Gomes da Rocha. "Nonlinear ion drift-diffusion memristance description of TiO2 RRAM devices." Nanoscale Advances 2, no. 6 (2020): 2514–24. http://dx.doi.org/10.1039/d0na00195c.
Full textLi, Bo, and Guoyong Shi. "A Native SPICE Implementation of Memristor Models for Simulation of Neuromorphic Analog Signal Processing Circuits." ACM Transactions on Design Automation of Electronic Systems 27, no. 1 (January 31, 2022): 1–24. http://dx.doi.org/10.1145/3474364.
Full textLi, Tongxuan. "Neuromorphic Devices Based on Two-Dimensional Materials and Their Applications." Highlights in Science, Engineering and Technology 87 (March 26, 2024): 186–91. http://dx.doi.org/10.54097/kxsmsn90.
Full textHo, Tsz-Lung, Keda Ding, Nikolay Lyapunov, Chun-Hung Suen, Lok-Wing Wong, Jiong Zhao, Ming Yang, Xiaoyuan Zhou, and Ji-Yan Dai. "Multi-Level Resistive Switching in SnSe/SrTiO3 Heterostructure Based Memristor Device." Nanomaterials 12, no. 13 (June 21, 2022): 2128. http://dx.doi.org/10.3390/nano12132128.
Full textYOON, Tae-Sik. "Artificial Synaptic Devices for Neuromorphic Systems." Physics and High Technology 28, no. 4 (April 30, 2019): 3–8. http://dx.doi.org/10.3938/phit.28.011.
Full textLiu, Yi-Chun, Ya Lin, Zhong-Qiang Wang, and Hai-Yang Xu. "Oxide-based memristive neuromorphic synaptic devices." Acta Physica Sinica 68, no. 16 (2019): 168504. http://dx.doi.org/10.7498/aps.68.20191262.
Full textGuo, Yan-Bo, and Li-Qiang Zhu. "Recent progress in optoelectronic neuromorphic devices." Chinese Physics B 29, no. 7 (August 2020): 078502. http://dx.doi.org/10.1088/1674-1056/ab99b6.
Full textChang, Ting, Yuchao Yang, and Wei Lu. "Building Neuromorphic Circuits with Memristive Devices." IEEE Circuits and Systems Magazine 13, no. 2 (2013): 56–73. http://dx.doi.org/10.1109/mcas.2013.2256260.
Full textLiu, Chang, Ru Huang, Yanghao Wang, and Yuchao Yang. "Progresses and outlook in neuromorphic devices." Chinese Science Bulletin 65, no. 10 (December 26, 2019): 904–15. http://dx.doi.org/10.1360/tb-2019-0739.
Full textSun, Jia, Ying Fu, and Qing Wan. "Organic synaptic devices for neuromorphic systems." Journal of Physics D: Applied Physics 51, no. 31 (July 10, 2018): 314004. http://dx.doi.org/10.1088/1361-6463/aacd99.
Full textZhu, Yixin, Huiwu Mao, Ying Zhu, Xiangjing Wang, Chuanyu Fu, Shuo Ke, Changjin Wan, and Qing Wan. "CMOS-Compatible Neuromorphic Devices for Neuromorphic Perception and Computing: A Review." International Journal of Extreme Manufacturing, August 11, 2023. http://dx.doi.org/10.1088/2631-7990/acef79.
Full textHuang, Zhuohui, Yanran Li, Yi Zhang, Jiewei Chen, Jun He, and Jie Jiang. "2D Multifunctional Devices: from Material Preparation to Device Fabrication and Neuromorphic Applications." International Journal of Extreme Manufacturing, February 28, 2024. http://dx.doi.org/10.1088/2631-7990/ad2e13.
Full textShen Liu-feng, Hu Ling-xiang, Kang Feng-wen, Ye Yu-min, and Zhuge Fei. "Optoelectronic neuromorphic devices and their applications." Acta Physica Sinica, 2022, 0. http://dx.doi.org/10.7498/aps.71.20220111.
Full textLong, Yan, Xiang Chen, Xiaoxin Pan, Jinxia Duan, Xiaoqing Li, Yongcheng Wu, Jie Tang, et al. "Memristor Constructed by CsPbIBr2 inorganic halide perovskite for Artificial Synapse and Logic Operation." physica status solidi (RRL) – Rapid Research Letters, October 31, 2023. http://dx.doi.org/10.1002/pssr.202300342.
Full textZhong, Hai, Kuijuan Jin, and Chen Ge. "Hafnia-based neuromorphic devices." Applied Physics Letters 125, no. 15 (October 7, 2024). http://dx.doi.org/10.1063/5.0226206.
Full textShim, Hyunseok, Seonmin Jang, Anish Thukral, Seongsik Jeong, Hyeseon Jo, Bin Kan, Shubham Patel, et al. "Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors." Proceedings of the National Academy of Sciences 119, no. 23 (June 2022). http://dx.doi.org/10.1073/pnas.2204852119.
Full textZhang, Zirui, Dongliang Yang, Huihan Li, Ce Li, Zhongrui Wang, Linfeng Sun, and Heejun Yang. "2D materials and van der Waals heterojunctions for neuromorphic computing." Neuromorphic Computing and Engineering, August 17, 2022. http://dx.doi.org/10.1088/2634-4386/ac8a6a.
Full textHu, Lingxiang, Xia Zhuge, Jingrui Wang, Xianhua Wei, Li Zhang, Yang Chai, Xiaoyong Xue, Zhizhen Ye, and Fei Zhuge. "Emerging Optoelectronic Devices for Brain‐Inspired Computing." Advanced Electronic Materials, September 9, 2024. http://dx.doi.org/10.1002/aelm.202400482.
Full textChen, H. J., C. C. Chiang, C. Y. Cheng, D. Qu, and S. Y. Huang. "Neuromorphic computing devices based on the asymmetric temperature gradient." Applied Physics Letters 122, no. 26 (June 26, 2023). http://dx.doi.org/10.1063/5.0155229.
Full textSun, Yilin, Huaipeng Wang, and Dan Xie. "Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications." Nano-Micro Letters 16, no. 1 (June 6, 2024). http://dx.doi.org/10.1007/s40820-024-01445-x.
Full textGao, Changsong, Di Liu, Chenhui Xu, Junhua Bai, Enlong Li, Xianghong Zhang, Xiaoting Zhu, et al. "Feedforward Photoadaptive Organic Neuromorphic Transistor with Mixed‐Weight Plasticity for Augmenting Perception." Advanced Functional Materials, January 23, 2024. http://dx.doi.org/10.1002/adfm.202313217.
Full textGärisch, Fabian, Vincent Schröder, Emil J. W. List‐Kratochvil, and Giovanni Ligorio. "Scalable Fabrication of Neuromorphic Devices Using Inkjet Printing for the Deposition of Organic Mixed Ionic‐Electronic Conductor." Advanced Electronic Materials, November 3, 2024. http://dx.doi.org/10.1002/aelm.202400479.
Full textJiang Zi-Han, Ke Shuo, Zhu Ying, Zhu Yi-Xin, Zhu Li, Wan Chang-Jin, and Wan Qing. "Flexible neuromorphic transistors for bio-inspired perception application." Acta Physica Sinica, 2022, 0. http://dx.doi.org/10.7498/aps.71.20220308.
Full textLu, Guangming, and Ekhard K. H. Salje. "Multiferroic neuromorphic computation devices." APL Materials 12, no. 6 (June 1, 2024). http://dx.doi.org/10.1063/5.0216849.
Full textPati, Satya Prakash, and Takeaki Yajima. "Review of solid-state proton devices for neuromorphic information processing." Japanese Journal of Applied Physics, February 14, 2024. http://dx.doi.org/10.35848/1347-4065/ad297b.
Full textJu, Dongyeol, Jungwoo Lee, and Sungjun Kim. "Nociceptor‐Enhanced Spike‐Timing‐Dependent Plasticity in Memristor with Coexistence of Filamentary and Non‐Filamentary Switching." Advanced Materials Technologies, May 19, 2024. http://dx.doi.org/10.1002/admt.202400440.
Full textLin, Xiangde, Zhenyu Feng, Yao Xiong, Wenwen Sun, Wanchen Yao, Yichen Wei, Zhong Lin Wang, and Qijun Sun. "Piezotronic Neuromorphic Devices: Principle, Manufacture, and Applications." International Journal of Extreme Manufacturing, March 13, 2024. http://dx.doi.org/10.1088/2631-7990/ad339b.
Full text