Journal articles on the topic 'Neuromorphic applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Neuromorphic applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mikki, Said. "Generalized Neuromorphism and Artificial Intelligence: Dynamics in Memory Space." Symmetry 16, no. 4 (April 18, 2024): 492. http://dx.doi.org/10.3390/sym16040492.
Full textPark, Jisoo, Jihyun Shin, and Hocheon Yoo. "Heterostructure-Based Optoelectronic Neuromorphic Devices." Electronics 13, no. 6 (March 14, 2024): 1076. http://dx.doi.org/10.3390/electronics13061076.
Full textHenkel, Jorg. "Stochastic Computing for Neuromorphic Applications." IEEE Design & Test 38, no. 6 (December 2021): 4. http://dx.doi.org/10.1109/mdat.2021.3126288.
Full textDiao, Yu, Yaoxuan Zhang, Yanran Li, and Jie Jiang. "Metal-Oxide Heterojunction: From Material Process to Neuromorphic Applications." Sensors 23, no. 24 (December 12, 2023): 9779. http://dx.doi.org/10.3390/s23249779.
Full textSchuman, Catherine, Robert Patton, Shruti Kulkarni, Maryam Parsa, Christopher Stahl, N. Quentin Haas, J. Parker Mitchell, et al. "Evolutionary vs imitation learning for neuromorphic control at the edge*." Neuromorphic Computing and Engineering 2, no. 1 (January 24, 2022): 014002. http://dx.doi.org/10.1088/2634-4386/ac45e7.
Full textKurshan, Eren, Hai Li, Mingoo Seok, and Yuan Xie. "A Case for 3D Integrated System Design for Neuromorphic Computing and AI Applications." International Journal of Semantic Computing 14, no. 04 (December 2020): 457–75. http://dx.doi.org/10.1142/s1793351x20500063.
Full textHuang, Heyi, Chen Ge, Zhuohui Liu, Hai Zhong, Erjia Guo, Meng He, Can Wang, Guozhen Yang, and Kuijuan Jin. "Electrolyte-gated transistors for neuromorphic applications." Journal of Semiconductors 42, no. 1 (January 1, 2021): 013103. http://dx.doi.org/10.1088/1674-4926/42/1/013103.
Full textPalmer, Chris. "Neuromorphic Computing Advances Deep-Learning Applications." Engineering 6, no. 8 (August 2020): 854–56. http://dx.doi.org/10.1016/j.eng.2020.06.010.
Full textLv, Wenxing, Jialin Cai, Huayao Tu, Like Zhang, Rongxin Li, Zhe Yuan, Giovanni Finocchio, et al. "Stochastic artificial synapses based on nanoscale magnetic tunnel junction for neuromorphic applications." Applied Physics Letters 121, no. 23 (December 5, 2022): 232406. http://dx.doi.org/10.1063/5.0126392.
Full textWang, Ye-Guo. "Applications of Memristors in Neural Networks and Neuromorphic Computing: A Review." International Journal of Machine Learning and Computing 11, no. 5 (September 2021): 350–56. http://dx.doi.org/10.18178/ijmlc.2021.11.5.1060.
Full textMarquez, Bicky A., Matthew J. Filipovich, Emma R. Howard, Viraj Bangari, Zhimu Guo, Hugh D. Morison, Thomas Ferreira De Lima, Alexander N. Tait, Paul R. Prucnal, and Bhavin J. Shastri. "Silicon photonics for artificial intelligence applications." Photoniques, no. 104 (September 2020): 40–44. http://dx.doi.org/10.1051/photon/202010440.
Full textTyler, Neil. "Tempo Targets Low-Power Chips for AI Applications." New Electronics 52, no. 13 (July 9, 2019): 7. http://dx.doi.org/10.12968/s0047-9624(22)61557-8.
Full textHuang, Yi, Fatemeh Kiani, Fan Ye, and Qiangfei Xia. "From memristive devices to neuromorphic systems." Applied Physics Letters 122, no. 11 (March 13, 2023): 110501. http://dx.doi.org/10.1063/5.0133044.
Full textJué, Emilie, Matthew R. Pufall, Ian W. Haygood, William H. Rippard, and Michael L. Schneider. "Perspectives on nanoclustered magnetic Josephson junctions as artificial synapses." Applied Physics Letters 121, no. 24 (December 12, 2022): 240501. http://dx.doi.org/10.1063/5.0118287.
Full textXu, Jiaqi, Xiaoning Zhao, Xiaoli Zhao, Zhongqiang Wang, Qingxin Tang, Haiyang Xu, and Yichun Liu. "Memristors with Biomaterials for Biorealistic Neuromorphic Applications." Small Science 2, no. 10 (October 2022): 2270020. http://dx.doi.org/10.1002/smsc.202270020.
Full textSchuman, Catherine D., Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. "Opportunities for neuromorphic computing algorithms and applications." Nature Computational Science 2, no. 1 (January 2022): 10–19. http://dx.doi.org/10.1038/s43588-021-00184-y.
Full textHajtó, Dániel, Ádám Rák, and György Cserey. "Robust Memristor Networks for Neuromorphic Computation Applications." Materials 12, no. 21 (October 31, 2019): 3573. http://dx.doi.org/10.3390/ma12213573.
Full textErokhin, Victor. "Memristive Devices for Neuromorphic Applications: Comparative Analysis." BioNanoScience 10, no. 4 (October 8, 2020): 834–47. http://dx.doi.org/10.1007/s12668-020-00795-1.
Full textLi, Tongxuan. "Neuromorphic Devices Based on Two-Dimensional Materials and Their Applications." Highlights in Science, Engineering and Technology 87 (March 26, 2024): 186–91. http://dx.doi.org/10.54097/kxsmsn90.
Full textGuo, Zhonghao. "Synaptic device-based neuromorphic computing in artificial intelligence." Applied and Computational Engineering 65, no. 1 (May 23, 2024): 253–59. http://dx.doi.org/10.54254/2755-2721/65/20240511.
Full textMartins, Raquel Azevedo, Emanuel Carlos, Jonas Deuermeier, Maria Elias Pereira, Rodrigo Martins, Elvira Fortunato, and Asal Kiazadeh. "Emergent solution based IGZO memristor towards neuromorphic applications." Journal of Materials Chemistry C 10, no. 6 (2022): 1991–98. http://dx.doi.org/10.1039/d1tc05465a.
Full textBlachowicz, Tomasz, and Andrea Ehrmann. "Magnetic Elements for Neuromorphic Computing." Molecules 25, no. 11 (May 30, 2020): 2550. http://dx.doi.org/10.3390/molecules25112550.
Full textElitalib, Elmunazir Husein, and Asnidar A. Ani Bahar. "Neuromorphic Computing Architectures for Real-time Image Processing and Pattern Recognition." Algorithm Asynchronous 1, no. 1 (August 29, 2023): 24–32. http://dx.doi.org/10.61963/jaa.v1i1.48.
Full textMoon, Jaehyun, Ju-Hun Lee, Kitae Kim, Junho Kim, Soohyung Park, Yeonjin Yi, and Seung-Youl Kang. "Threshold Switching of ALD-NbOx Films for Neuromorphic Applications." ECS Meeting Abstracts MA2023-02, no. 30 (December 22, 2023): 1558. http://dx.doi.org/10.1149/ma2023-02301558mtgabs.
Full textFeng, Chenyin, Wenwei Wu, Huidi Liu, Junke Wang, Houzhao Wan, Guokun Ma, and Hao Wang. "Emerging Opportunities for 2D Materials in Neuromorphic Computing." Nanomaterials 13, no. 19 (October 7, 2023): 2720. http://dx.doi.org/10.3390/nano13192720.
Full textOlin-Ammentorp, Wilkie, and Nathaniel Cady. "Biologically-Inspired Neuromorphic Computing." Science Progress 102, no. 3 (May 14, 2019): 261–76. http://dx.doi.org/10.1177/0036850419850394.
Full textMarquez, Bicky A., Hugh Morison, Zhimu Guo, Matthew Filipovich, Paul R. Prucnal, and Bhavin J. Shastri. "Graphene-based photonic synapse for multi wavelength neural networks." MRS Advances 5, no. 37-38 (2020): 1909–17. http://dx.doi.org/10.1557/adv.2020.327.
Full textKim, Dongshin, Ik-Jyae Kim, and Jang-Sik Lee. "Memory Devices for Flexible and Neuromorphic Device Applications." Advanced Intelligent Systems 3, no. 5 (January 25, 2021): 2000206. http://dx.doi.org/10.1002/aisy.202000206.
Full textPolian, Ilia, John P. Hayes, Vincent T. Lee, and Weikang Qian. "Guest Editors’ Introduction: Stochastic Computing for Neuromorphic Applications." IEEE Design & Test 38, no. 6 (December 2021): 5–15. http://dx.doi.org/10.1109/mdat.2021.3080989.
Full textMiranda, Enrique, and Jordi Suñé. "Memristors for Neuromorphic Circuits and Artificial Intelligence Applications." Materials 13, no. 4 (February 20, 2020): 938. http://dx.doi.org/10.3390/ma13040938.
Full textChen, Yu, Gang Liu, Cheng Wang, Wenbin Zhang, Run-Wei Li, and Luxing Wang. "Polymer memristor for information storage and neuromorphic applications." Materials Horizons 1, no. 5 (June 2, 2014): 489. http://dx.doi.org/10.1039/c4mh00067f.
Full textLuo, Zheng-Dong, Ming-Min Yang, and Marin Alexe. "Dissolvable Memristors for Physically Transient Neuromorphic Computing Applications." ACS Applied Electronic Materials 2, no. 2 (December 13, 2019): 310–15. http://dx.doi.org/10.1021/acsaelm.9b00670.
Full textOh, Chadol, and Junwoo Son. "Hydrogen Sensor and Neuromorphic Applications Using Correlated Materials." Ceramist 22, no. 1 (March 31, 2019): 17–26. http://dx.doi.org/10.31613/ceramist.2019.22.1.02.
Full textGaba, Siddharth, Patrick Sheridan, Jiantao Zhou, Shinhyun Choi, and Wei Lu. "Stochastic memristive devices for computing and neuromorphic applications." Nanoscale 5, no. 13 (2013): 5872. http://dx.doi.org/10.1039/c3nr01176c.
Full textYu, Fei, and Li Qiang Zhu. "Ionotronic Neuromorphic Devices for Bionic Neural Network Applications." physica status solidi (RRL) – Rapid Research Letters 13, no. 6 (June 2019): 1970022. http://dx.doi.org/10.1002/pssr.201970025.
Full textTian, He, Qiushi Guo, Yujun Xie, Huan Zhao, Cheng Li, Judy J. Cha, Fengnian Xia, and Han Wang. "Anisotropic Black Phosphorus Synaptic Device for Neuromorphic Applications." Advanced Materials 28, no. 25 (April 27, 2016): 4991–97. http://dx.doi.org/10.1002/adma.201600166.
Full textGerasimov, Jennifer Y., Roger Gabrielsson, Robert Forchheimer, Eleni Stavrinidou, Daniel T. Simon, Magnus Berggren, and Simone Fabiano. "An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications." Advanced Science 6, no. 7 (February 4, 2019): 1801339. http://dx.doi.org/10.1002/advs.201801339.
Full textWang, Chen‐Yu, Cong Wang, Fanhao Meng, Pengfei Wang, Shuang Wang, Shi‐Jun Liang, and Feng Miao. "2D Layered Materials for Memristive and Neuromorphic Applications." Advanced Electronic Materials 6, no. 2 (December 11, 2019): 1901107. http://dx.doi.org/10.1002/aelm.201901107.
Full textYou, Tao, Miao Zhao, Zhikang Fan, and Chenwei Ju. "Emerging Memtransistors for Neuromorphic System Applications: A Review." Sensors 23, no. 12 (June 7, 2023): 5413. http://dx.doi.org/10.3390/s23125413.
Full textKutluyarov, Ruslan V., Aida G. Zakoyan, Grigory S. Voronkov, Elizaveta P. Grakhova, and Muhammad A. Butt. "Neuromorphic Photonics Circuits: Contemporary Review." Nanomaterials 13, no. 24 (December 14, 2023): 3139. http://dx.doi.org/10.3390/nano13243139.
Full textBhat, Pranava. "Analysis of Neuromorphic Computing Systems and its Applications in Machine Learning." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 30, 2021): 5309–12. http://dx.doi.org/10.22214/ijraset.2021.35601.
Full textNiu, Xuezhong, Bobo Tian, Qiuxiang Zhu, Brahim Dkhil, and Chungang Duan. "Ferroelectric polymers for neuromorphic computing." Applied Physics Reviews 9, no. 2 (June 2022): 021309. http://dx.doi.org/10.1063/5.0073085.
Full textQian, Fangsheng, Xiaobo Bu, Junjie Wang, Ziyu Lv, Su-Ting Han, and Ye Zhou. "Evolutionary 2D organic crystals for optoelectronic transistors and neuromorphic computing." Neuromorphic Computing and Engineering 2, no. 1 (February 7, 2022): 012001. http://dx.doi.org/10.1088/2634-4386/ac4a84.
Full textWaser, Rainer, Regina Dittmann, Stephan Menzel, and Tobias Noll. "Introduction to new memory paradigms: memristive phenomena and neuromorphic applications." Faraday Discussions 213 (2019): 11–27. http://dx.doi.org/10.1039/c8fd90058b.
Full textYan, Yujie, Xiaomin Wu, Qizhen Chen, Xiumei Wang, Enlong Li, Yuan Liu, Huipeng Chen, and Tailiang Guo. "An intrinsically healing artificial neuromorphic device." Journal of Materials Chemistry C 8, no. 20 (2020): 6869–76. http://dx.doi.org/10.1039/d0tc00726a.
Full textClair, Judicael, Guy Eichler, and Luca P. Carloni. "SpikeHard: Efficiency-Driven Neuromorphic Hardware for Heterogeneous Systems-on-Chip." ACM Transactions on Embedded Computing Systems 22, no. 5s (September 9, 2023): 1–22. http://dx.doi.org/10.1145/3609101.
Full textChen, Lin, Tian-Yu Wang, Ya-Wei Dai, Ming-Yang Cha, Hao Zhu, Qing-Qing Sun, Shi-Jin Ding, Peng Zhou, Leon Chua, and David Wei Zhang. "Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications." Nanoscale 10, no. 33 (2018): 15826–33. http://dx.doi.org/10.1039/c8nr04734k.
Full textJeon, Yunchae, Donghyun Lee, and Hocheon Yoo. "Recent Advances in Metal-Oxide Thin-Film Transistors: Flexible/Stretchable Devices, Integrated Circuits, Biosensors, and Neuromorphic Applications." Coatings 12, no. 2 (February 4, 2022): 204. http://dx.doi.org/10.3390/coatings12020204.
Full textJaafar, Ayoub H., Robert J. Gray, Emanuele Verrelli, Mary O'Neill, Stephen M. Kelly, and Neil T. Kemp. "Reversible optical switching memristors with tunable STDP synaptic plasticity: a route to hierarchical control in artificial intelligent systems." Nanoscale 9, no. 43 (2017): 17091–98. http://dx.doi.org/10.1039/c7nr06138b.
Full textShen Liu-feng, Hu Ling-xiang, Kang Feng-wen, Ye Yu-min, and Zhuge Fei. "Optoelectronic neuromorphic devices and their applications." Acta Physica Sinica, 2022, 0. http://dx.doi.org/10.7498/aps.71.20220111.
Full text