Journal articles on the topic 'NeuroElectronics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 45 journal articles for your research on the topic 'NeuroElectronics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jastrzebska‐Perfect, Patricia, Shilpika Chowdhury, George D. Spyropoulos, Zifang Zhao, Claudia Cea, Jennifer N. Gelinas, and Dion Khodagholy. "Translational Neuroelectronics." Advanced Functional Materials 30, no. 29 (June 8, 2020): 1909165. http://dx.doi.org/10.1002/adfm.201909165.
Full textWaldrop, M. Mitchell. "Neuroelectronics: Smart connections." Nature 503, no. 7474 (November 2013): 22–24. http://dx.doi.org/10.1038/503022a.
Full textKrook-Magnuson, Esther, Jennifer N. Gelinas, Ivan Soltesz, and György Buzsáki. "Neuroelectronics and Biooptics." JAMA Neurology 72, no. 7 (July 1, 2015): 823. http://dx.doi.org/10.1001/jamaneurol.2015.0608.
Full textGo, Gyeong‐Tak, Yeongjun Lee, Dae‐Gyo Seo, and Tae‐Woo Lee. "Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics." Advanced Materials 35, no. 12 (March 2023): 2300758. http://dx.doi.org/10.1002/adma.202300758.
Full textVitale, Flavia, and Raghav Garg. "Novel materials and fabrication strategies for multimodal neuroelectronics." Brain Stimulation 16, no. 1 (January 2023): 117. http://dx.doi.org/10.1016/j.brs.2023.01.014.
Full textDi Palma, Valerio, Andrea Pianalto, Michele Perego, Graziella Tallarida, Davide Codegoni, and Marco Fanciulli. "Plasma-Assisted Atomic Layer Deposition of IrO2 for Neuroelectronics." Nanomaterials 13, no. 6 (March 8, 2023): 976. http://dx.doi.org/10.3390/nano13060976.
Full textBourrier, Antoine, Anna Szarpak-Jankowska, Farida Veliev, Renato Olarte-Hernandez, Polina Shkorbatova, Marco Bonizzato, Elodie Rey, et al. "Introducing a biomimetic coating for graphene neuroelectronics: toward in-vivo applications." Biomedical Physics & Engineering Express 7, no. 1 (December 4, 2020): 015006. http://dx.doi.org/10.1088/2057-1976/ab42d6.
Full textGo, Gyeong‐Tak, Yeongjun Lee, Dae‐Gyo Seo, and Tae‐Woo Lee. "Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics (Adv. Mater. 45/2022)." Advanced Materials 34, no. 45 (November 2022): 2270311. http://dx.doi.org/10.1002/adma.202270311.
Full textGolabchi, Asiyeh, Kevin M. Woeppel, Xia Li, Carl F. Lagenaur, and X. Tracy Cui. "Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain." Biosensors and Bioelectronics 155 (May 2020): 112096. http://dx.doi.org/10.1016/j.bios.2020.112096.
Full textZhao, Zifang, Claudia Cea, Jennifer N. Gelinas, and Dion Khodagholy. "Responsive manipulation of neural circuit pathology by fully implantable, front-end multiplexed embedded neuroelectronics." Proceedings of the National Academy of Sciences 118, no. 20 (May 10, 2021): e2022659118. http://dx.doi.org/10.1073/pnas.2022659118.
Full textOuellette, Mathieu, Jessy Mathault, Shimwe Dominique Niyonambaza, Amine Miled, and Elodie Boisselier. "Electrochemical Detection of Dopamine Based on Functionalized Electrodes." Coatings 9, no. 8 (August 6, 2019): 496. http://dx.doi.org/10.3390/coatings9080496.
Full textBoriskov, Petr, and Andrei Velichko. "Switch Elements with S-Shaped Current-Voltage Characteristic in Models of Neural Oscillators." Electronics 8, no. 9 (August 22, 2019): 922. http://dx.doi.org/10.3390/electronics8090922.
Full textRodrigues, Fabiano de Abreu. "NEUROELETRÓNICO: COMUNICAÇÃO ENTRE NEURÔNIOS ARTIFICIAIS, CEREBRAIS E A INTERNET / NEUROELECTRONICS: COMMUNICATION BETWEEN ARTIFICIAL NEURONS, BRAINS, AND THE INTERNET." Brazilian Journal of Development 7, no. 2 (2021): 15766–71. http://dx.doi.org/10.34117/bjdv7n2-276.
Full textDurand, D. "Neural Engineering." Methods of Information in Medicine 46, no. 02 (2007): 142–46. http://dx.doi.org/10.1055/s-0038-1625395.
Full textRinklin, Philipp, and Bernhard Wolfrum. "Recent developments and future perspectives on neuroelectronic devices." Neuroforum 27, no. 4 (October 8, 2021): 213–24. http://dx.doi.org/10.1515/nf-2021-0019.
Full textKim, Raeyoung, Nari Hong, and Yoonkey Nam. "Gold nanograin microelectrodes for neuroelectronic interfaces." Biotechnology Journal 8, no. 2 (November 9, 2012): 206–14. http://dx.doi.org/10.1002/biot.201200219.
Full textFrommherz, P. "Neuroelectronic Interfacing, its Nature and Implementation." Chemie Ingenieur Technik 78, no. 9 (September 2006): 1435. http://dx.doi.org/10.1002/cite.200690098.
Full textBirmingham, John T., Dustin M. Graham, and David L. Tauck. "Lymnaea stagnalis and the development of neuroelectronic technologies." Journal of Neuroscience Research 76, no. 3 (2004): 277–81. http://dx.doi.org/10.1002/jnr.20022.
Full textGuimerà-Brunet, Anton, Eduard Masvidal-Codina, Jose Cisneros-Fernández, Francesc Serra-Graells, and Jose A. Garrido. "Novel transducers for high-channel-count neuroelectronic recording interfaces." Current Opinion in Biotechnology 72 (December 2021): 39–47. http://dx.doi.org/10.1016/j.copbio.2021.10.002.
Full textRutten, W., J. M. Mouveroux, J. Buitenweg, C. Heida, T. Ruardij, E. Marani, and E. Lakke. "Neuroelectronic interfacing with cultured multielectrode arrays toward a cultured probe." Proceedings of the IEEE 89, no. 7 (July 2001): 1013–29. http://dx.doi.org/10.1109/5.939810.
Full textWolf, Nikolaus R., Pratika Rai, Manuel Glass, Frano Milos, Vanessa Maybeck, Andreas Offenhäusser, and Roger Wördenweber. "Mechanical and Electronic Cell–Chip Interaction of APTES-Functionalized Neuroelectronic Interfaces." ACS Applied Bio Materials 4, no. 8 (August 4, 2021): 6326–37. http://dx.doi.org/10.1021/acsabm.1c00576.
Full textZhang, Anqi, Emiri T. Mandeville, Lijun Xu, Creed M. Stary, Eng H. Lo, and Charles M. Lieber. "Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature." Science 381, no. 6655 (July 21, 2023): 306–12. http://dx.doi.org/10.1126/science.adh3916.
Full textKuliasha, Cary A., and Jack W. Judy. "The Materials Science Foundation Supporting the Microfabrication of Reliable Polyimide–Metal Neuroelectronic Interfaces." Advanced Materials Technologies 6, no. 6 (May 3, 2021): 2100149. http://dx.doi.org/10.1002/admt.202100149.
Full textZeck, G., and P. Fromherz. "Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip." Proceedings of the National Academy of Sciences 98, no. 18 (August 28, 2001): 10457–62. http://dx.doi.org/10.1073/pnas.181348698.
Full textChang, C. H., S. R. Chang, J. S. Lin, Y. T. Lee, S. R. Yeh, and H. Chen. "A CMOS neuroelectronic interface based on two-dimensional transistor arrays with monolithically-integrated circuitry." Biosensors and Bioelectronics 24, no. 6 (February 2009): 1757–64. http://dx.doi.org/10.1016/j.bios.2008.09.007.
Full textHai, Aviad, Joseph Shappir, and Micha E. Spira. "Long-Term, Multisite, Parallel, In-Cell Recording and Stimulation by an Array of Extracellular Microelectrodes." Journal of Neurophysiology 104, no. 1 (July 2010): 559–68. http://dx.doi.org/10.1152/jn.00265.2010.
Full textFROMHERZ, P. "Three Levels of Neuroelectronic Interfacing: Silicon Chips with Ion Channels, Nerve Cells, and Brain Tissue." Annals of the New York Academy of Sciences 1093, no. 1 (December 1, 2006): 143–60. http://dx.doi.org/10.1196/annals.1382.011.
Full textHegel, Lena, Andrea Kauth, Karsten Seidl, and Sven Ingebrandt. "Self-Assembling Flexible 3D-MEAs for Cortical Implants." Current Directions in Biomedical Engineering 7, no. 2 (October 1, 2021): 359–62. http://dx.doi.org/10.1515/cdbme-2021-2091.
Full textVanDersarl, Jules J., André Mercanzini, and Philippe Renaud. "Integration of 2D and 3D Thin Film Glassy Carbon Electrode Arrays for Electrochemical Dopamine Sensing in Flexible Neuroelectronic Implants." Advanced Functional Materials 25, no. 1 (November 6, 2014): 78–84. http://dx.doi.org/10.1002/adfm.201402934.
Full textWan, Jiandi, Sitong Zhou, Hing Jii Mea, Yaojun Guo, Hansol Ku, and Brianna M. Urbina. "Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering." Chemical Reviews 122, no. 7 (January 26, 2022): 7142–81. http://dx.doi.org/10.1021/acs.chemrev.1c00480.
Full textPashkevich, S. G., and N. S. Serdyuchenko. "Glycosaminoglycans role in hippocampal neural networks interneuronal communications." Doklady of the National Academy of Sciences of Belarus 64, no. 5 (November 5, 2020): 590–98. http://dx.doi.org/10.29235/1561-8323-2020-64-5-590-598.
Full textTrzpil-Jurgielewicz, Beata, Władysław Dąbrowski, and Paweł Hottowy. "Analysis and Reduction of Nonlinear Distortion in AC-Coupled CMOS Neural Amplifiers with Tunable Cutoff Frequencies." Sensors 21, no. 9 (April 30, 2021): 3116. http://dx.doi.org/10.3390/s21093116.
Full textQi, Yongli, Seung-Kyun Kang, and Hui Fang. "Advanced materials for implantable neuroelectronics." MRS Bulletin, May 24, 2023. http://dx.doi.org/10.1557/s43577-023-00540-5.
Full textKim, Giheon, Minki Hong, Yerim Lee, and Jahyun Koo. "Biodegradable materials and devices for neuroelectronics." MRS Bulletin, May 12, 2023. http://dx.doi.org/10.1557/s43577-023-00529-0.
Full textAndreeva, Natalia V., Eugeny A. Ryndin, Dmitriy S. Mazing, Oleg Y. Vilkov, and Victor V. Luchinin. "Organismic Memristive Structures With Variable Functionality for Neuroelectronics." Frontiers in Neuroscience 16 (June 14, 2022). http://dx.doi.org/10.3389/fnins.2022.913618.
Full text"Solution-Processed High-k Dielectric Films for Wearable Neuroelectronics." ECS Meeting Abstracts, 2018. http://dx.doi.org/10.1149/ma2018-01/26/1562.
Full textMikhaylov, Alexey N., Sergey A. Shchanikov, Vyacheslav A. Demin, Valeri A. Makarov, and Victor B. Kazantsev. "Editorial: Neuroelectronics: towards symbiosis of neuronal systems and emerging electronics." Frontiers in Neuroscience 17 (June 7, 2023). http://dx.doi.org/10.3389/fnins.2023.1227798.
Full textDainow, Brandt. "Threats to Autonomy from Emerging ICTs." Australasian Journal of Information Systems 21 (November 26, 2017). http://dx.doi.org/10.3127/ajis.v21i0.1438.
Full textBruno, Ugo, Anna Mariano, Daniela Rana, Tobias Gemmeke, Simon Musall, and Francesca Santoro. "From neuromorphic to neurohybrid: transition from the emulation to the integration of neuronal networks." Neuromorphic Computing and Engineering, March 22, 2023. http://dx.doi.org/10.1088/2634-4386/acc683.
Full textAdewole, Dayo O., Mijail D. Serruya, John A. Wolf, and D. Kacy Cullen. "Bioactive Neuroelectronic Interfaces." Frontiers in Neuroscience 13 (March 29, 2019). http://dx.doi.org/10.3389/fnins.2019.00269.
Full textSeo, Kyung Jin, Mackenna Hill, Jaehyeon Ryu, Chia-Han Chiang, Iakov Rachinskiy, Yi Qiang, Dongyeol Jang, et al. "A soft, high-density neuroelectronic array." npj Flexible Electronics 7, no. 1 (August 22, 2023). http://dx.doi.org/10.1038/s41528-023-00271-2.
Full textHofmann, Ulrich G., and Jeffrey R. Capadona. "Editorial: Bridging the Gap in Neuroelectronic Interfaces." Frontiers in Neuroscience 14 (June 3, 2020). http://dx.doi.org/10.3389/fnins.2020.00457.
Full textJiaxiang, Xue, and Liu Zhixin. "Advances and Development of Electronic Neural Interfaces." Journal of Computing and Natural Science, July 5, 2023, 147–57. http://dx.doi.org/10.53759/181x/jcns202303014.
Full textYang, Qianru, and X. Tracy Cui. "Advanced in vivo fluorescence microscopy of neural electronic interface." MRS Bulletin, May 5, 2023. http://dx.doi.org/10.1557/s43577-023-00530-7.
Full textNella, Kevin T., Benjamin M. Norton, Hsiang-Tsun Chang, Rachel A. Heuer, Christian B. Roque, and Akihiro J. Matsuoka. "Bridging the electrode–neuron gap: finite element modeling of in vitro neurotrophin gradients to optimize neuroelectronic interfaces in the inner ear." Acta Biomaterialia, August 2022. http://dx.doi.org/10.1016/j.actbio.2022.08.035.
Full text