Academic literature on the topic 'Neurobiology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neurobiology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Neurobiology"
STRAUSFELD, N. J. "Spider Neurobiology: Neurobiology of Arachnids." Science 231, no. 4745 (March 28, 1986): 1610. http://dx.doi.org/10.1126/science.231.4745.1610.
Full textChristensen, Bruce K., and Robert M. Bilder. "Dual Cytoarchitectonic Trends: An Evolutionary Model of Frontal Lobe Functioning and Its Application to Psychopathology." Canadian Journal of Psychiatry 45, no. 3 (April 2000): 247–56. http://dx.doi.org/10.1177/070674370004500303.
Full textWilding, J., P. Widdowson, and G. Williams. "Neurobiology." British Medical Bulletin 53, no. 2 (January 1, 1997): 286–306. http://dx.doi.org/10.1093/oxfordjournals.bmb.a011614.
Full textLumsden, Andrew, Susan Chapman, Stefan Jungbluth, Esther Bell, Ana Coutinho, Moheb Costandi, Niels Adams, et al. "Neurobiology." Current Opinion in Neurobiology 10, no. 3 (June 2000): 275–86. http://dx.doi.org/10.1016/s0959-4388(00)00102-1.
Full textLumsden, Andrew, Susan Chapman, Ana Coutinho, Jonathan Gilthorpe, Aida Halilagic, Frank Shubert, Richard Wingate, et al. "Neurobiology." Current Opinion in Neurobiology 10, no. 4 (August 2000): 423–32. http://dx.doi.org/10.1016/s0959-4388(00)00106-9.
Full textLumsden, Andrew, Susan Chapman, Frank Schubert, Leah Toole, Mark Mayford, Stephan Hamann, Paul J. Reber, et al. "Neurobiology." Current Opinion in Neurobiology 11, no. 1 (February 2001): 1–9. http://dx.doi.org/10.1016/s0959-4388(00)00185-9.
Full textLumsden, Andrew, Ana Coutinho, Jamilé Hazan, Frank Schubert, Mark Mayford, Stephan Hamann, Paul J. Reber, et al. "Neurobiology." Current Opinion in Neurobiology 11, no. 2 (April 2001): 135–43. http://dx.doi.org/10.1016/s0959-4388(00)00187-2.
Full textLumsden, Andrew, Laura Andreae, Jonathan Gilthorpe, Sally Lowell, Frank Schubert, Stephan Hamann, Paul J. Reber, et al. "Neurobiology." Current Opinion in Neurobiology 11, no. 3 (June 2001): 259–66. http://dx.doi.org/10.1016/s0959-4388(00)00205-1.
Full textPrice, J. "Neurobiology." Current Opinion in Neurobiology 11, no. 4 (August 1, 2001): 395–404. http://dx.doi.org/10.1016/s0959-4388(00)00224-5.
Full textPrice, Jack, Alcino J. Silva, Steven A. Kushner, Paul J. Reber, Michael Häusser, John N. Wood, David S. Bredt, et al. "Neurobiology." Current Opinion in Neurobiology 11, no. 6 (December 2001): 643–50. http://dx.doi.org/10.1016/s0959-4388(01)00262-8.
Full textDissertations / Theses on the topic "Neurobiology"
Vílchez, Acosta Alba del Valle. "Analysis of Reelin function in brain development and in adult neurogenesis = Análisis de la función de Reelina en el desarrollo del cerebro y la neurogénesis adulta." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668316.
Full textReelina es una glicoproteína extracelular de matriz esencial para la regulación de los procesos de migración neuronal y posicionamiento de las neuronas corticales durante el desarrollo del encéfalo. Durante la embriogénesis, Reelina es producida por las células Cajal-Retzius de la superficie de la corteza en desarrollo. En este estadío, las neuronas postmitóticas migran de forma ordenada originando una estructura laminar en seis capas, en las cuáles las neuronas más jóvenes se sitúan en las capas más externas. La pérdida de Reelina durante el desarrollo comporta fallos en la migración de las neuronas, provocando a su vez grandes alteraciones en la estructuración de la corteza que contribuyen a la patogénesis de muchos trastornos neurológicos como el autismo, la epilepsia, la esquizofrenia, o el trastorno bipolar. En este contexto, uno de los fenotipos más estudiado es el del ratón mutante de Reelina, reeler, que presenta una estructura cortical alterada con las capas invertidas. Sin embargo, dado que la expresión de Reelina durante el desarrollo ocurre a edades embrionarias muy tempranas, es difícil estudiar el efecto de su pérdida en este tipo de mutantes a edades más tardías, en los que los primeros efectos de su pérdida son tan profundos. Todo ello evidencia la necesidad de desarrollar otro tipo de modelos en los que la pérdida de Reelina sea más gradual o selectiva. En estadíos perinatales y en el cerebro adulto Reelina es expresada principalmente por interneuronas gabaérgicas, donde presumiblemente Reelina controla funciones de formación de sinapsis y mantenimiento de la plasticidad sináptica de las neuronas del córtex y del hipocampo. Nuestros resultados muestran un fenotipo diferencial para cada uno de nuestros mutantes, sugiriendo un papel diferente de Reelina expresada por cada tipo celular, o en función del estadío en el cuál la deleccionamos. En concreto, hemos visto que la función de Reelina es imprescindible para la correcta laminación del córtex, para la formación del hipocampo, y para el correcto posicionamiento de las células Purkinje del cerebelo. Además la pérdida de Reelina en estadíos adultos comporta fallos en la neurogénesis de la zona subventricular del giro dentado.
Rudén, Ludvig. "Neurobiology of opioid addiction." Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-15735.
Full textBalia, Maddalena. "Etude de la connectivité GABAergique des précurseurs d’oligodendrocytes durant le développement cortical." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB106/document.
Full textOligodendrocyte precursors cells (OPCs) are a major pool of progenitors during early development, but also persist in the adult. In 2000, a major dogma in neuroscience was broken when the existence of bona fide synapses between neurons and OPCs, a non-neuronal cell in the brain, was demonstrated. Now, it is known that OPCs can be contacted either by glutamatergic or GABAergic synapses in grey and white matter regions. However, the role of these synapses, especially of GABAergic synapses, in OPC physiology is still unclear. Our team previously demonstrated that synaptic inputs received by OPCs in the deep layer of the somatosensory cortex are primarly GABAergic. It shows that these synapses are transient, reaching a peak of connectivity in the second postnatal week (2PNW) and disappearing in the fourth postnatal week (4PNW). Nevertheless, a different mode of GABAergic transmission still persists in the 4PNW in a form of an extrasynaptic transmission relying solely on GABA spillover from nearby neurons. In the first study of this thesis, I demonstrated that the developmental switch of transmission from synaptic to extrasynaptic between GABAergic interneurons and OPCs is accompanied by molecular changes in the subunit composition of the GABAA receptors (GABAARs) of OPCs. These changes are mainly characterized by the downregulation of the γ2 and the α5 subunits between the 2PNW and the 4PNW. Interestingly, the γ2 subunit, known as a hallmark of synaptic GABAARs in neurons, is downregulated in concomitance with the loss of synaptic inputs of cortical OPCs. Pharmacology specific for γ2 showed that the switch of transmission starts at the end of the 2PNW, with a gradual loss of sensitivity to diazepam, and a decrease in the amplitude of the miniature GABAergic evoked events. The leading hypotheses regarding the role of OPC synapses include proliferation and differentiation of OPCs as well as myelination. However, none has been formally demonstrated. Since γ2 is expressed exclusively at synaptic sites in OPCs, I targeted this subunit to inactivate γ2-mediated synapses and unravel their fonction in OPCs during postnatal development. The inducible deletion of γ2 in OPCs decreased by more than a half their GABAergic synaptic activity during the 2PNW, indicating that this model constitutes a suitable tool to inactivate cortical GABAergic OPC synapses. Contrary to initial hypotheses, including those of my team, we did not observe any change in proliferation, differentiation or developmental myelination pattern of the somatosensory cortex in the knockout mouse. In addition, two-photon calcium imaging allowed us to demonstrate that evoked γ2- mediated synaptic signaling does not involved calcium signaling. Nevertheless, we observed a decrease in the number of OPCs at P30 in the knockout mouse, suggesting that these synapses regulate the self-maintenance capacity of OPCs rather than oligodendrogenesis or myelination. To confirm that the reduction of OPC density is caused specifically by the inactivation of γ2-mediated synapses, we examined the proportion of recombinant OPCs and OLs, and used non-recombinant cells as internal controls. We observed a significant 32% decrease of recombined OPCs in the knockout at P30 that was not compensated by recombinant OLs or non-recombinant cells. Hence, postsynaptic γ2-mediated GABAARs play a role in adjusting OPC density during postnatal development. In conclusion, during my thesis I have demonstrated that the postnatal switch of transmission from synaptic in the 2PNW to extrasynaptic at the 4PNW between interneurons and OPCs is accompanied by the down-regulation of the γ2 subunit of GABAARs in cortical OPCs. Impairing the γ2-mediated synaptic GABAergic signaling in OPCs did not result in drastic changes in the proliferation of differentiation of these cells. Instead, our results rather indicate a role in the density homeostasis of OPC population during cortical development
Campbell, Thomas. "The Neurobiology of Intertemporal Choice." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491330.
Full textNandi, L. Reema S. N. "The developmental neurobiology of opioids." Thesis, University College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413159.
Full textEgorova, Natalia. "Neurobiology of speech act processing." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648313.
Full textSierra, Siegert Mauricio. "Depersonalization : from phenomenology to neurobiology." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621369.
Full textJohnson, Miranda Diane. "Neurobiology of activity-based anorexia." Tallahassee, Fla. : Florida State University, 2009. http://purl.fcla.edu/fsu/lib/digcoll/undergraduate/honors-theses/244564.
Full textAtherton, Christine J. "The neurobiology of object constancy." Thesis, Bangor University, 2005. https://research.bangor.ac.uk/portal/en/theses/the-neurobiology-of-object-constancy(3f31a74c-3acb-42f2-8941-967e61ad8bac).html.
Full textSchmitz, Nicole. "The neurobiology of autistic spectrum disorder." Thesis, King's College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406247.
Full textBooks on the topic "Neurobiology"
Gilles, Raymond, and Jacques Balthazart, eds. Neurobiology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-87599-1.
Full textTorre, Vincent, and Franco Conti, eds. Neurobiology. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5899-6.
Full textOpen University. SD206 Course Team, ed. Neurobiology. Milton Keynes: Open University Press, 1992.
Find full textDworkin, Sebastian, ed. Neurobiology. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3585-8.
Full text1949-, Robinson David, ed. Neurobiology. Berlin: Springer in association with the Open University, 1998.
Find full textSmith, C. U. M. Elements of molecular neurobiology. Chichester: Wiley, 1989.
Find full textBianchi, Lynne. Developmental Neurobiology. New York, NY: Garland Science, Taylor & Francis Group, LLC,: Garland Science, 2017. http://dx.doi.org/10.1201/9781351189477.
Full textRao, Mahendra S., and Marcus Jacobson†, eds. Developmental Neurobiology. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-28117-7.
Full textHeinemann, Steve, and James Patrick, eds. Molecular Neurobiology. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7488-0.
Full textBanghart, Matthew R., ed. Chemical Neurobiology. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-345-9.
Full textBook chapters on the topic "Neurobiology"
Punzo, Fred. "Neurobiology." In The Biology of Camel-Spiders, 45–69. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5727-2_3.
Full textBunge, Mario, and Rubén Ardila. "Neurobiology." In Philosophy of Psychology, 139–65. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4696-1_7.
Full textBlom, Jan Dirk. "Neurobiology." In Alice in Wonderland Syndrome, 137–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18609-8_5.
Full textAnagnostou, Evdokia, Deepali Mankad, Joshua Diehl, Catherine Lord, Sarah Butler, Andrea McDuffie, Lisa Shull, et al. "Neurobiology." In Encyclopedia of Autism Spectrum Disorders, 2014. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_100928.
Full textFerguson, Lorena A., and Stephanie L. Leal. "Neurobiology." In Lifestyle Psychiatry, 111–31. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/b22810-12.
Full textClausen, Torben, José Luis Trejo, Mark P. Mattson, Alexis M. Stranahan, Joanna Erion, Rosa Maria Bruno, Stefano Taddei, and Melinda M. Manore. "Neurobiology." In Encyclopedia of Exercise Medicine in Health and Disease, 636. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2749.
Full textSchmahl, C. "Neurobiology." In Trauma Sequelae, 89–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64057-9_6.
Full textSchmahl, C. "Neurobiology." In Trauma Sequelae, 89–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64057-9_6.
Full textSchmahl, C. "Neurobiology." In Trauma Sequelae, 89–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64057-9_6.
Full textSnyder, Solomon H. "Molecular Neurobiology." In Molecular Neurobiology, 3–8. Totowa, NJ: Humana Press, 1988. http://dx.doi.org/10.1007/978-1-4612-4604-6_2.
Full textConference papers on the topic "Neurobiology"
Zeringue, Henry C. "Microtechnologies for Neurobiology." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13341.
Full textBateman, Chris, and Lennart E. Nacke. "The neurobiology of play." In the International Academic Conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1920778.1920780.
Full textKyselova, A., and E. Chernishova. "NEUROBIOLOGY OF POSTTRAUMATIC STRESS DISORDER." In Scientific discoveries: projects, strategies and development. European Scientific Platform, 2019. http://dx.doi.org/10.36074/25.10.2019.v2.13.
Full textJiang, Yaoguang, and Michael Platt. "The neurobiology of strategic competition." In 2022 Conference on Cognitive Computational Neuroscience. San Francisco, California, USA: Cognitive Computational Neuroscience, 2022. http://dx.doi.org/10.32470/ccn.2022.1270-0.
Full textFromherz, Peter. "Microelectronics meets Molecular and Neurobiology." In 2002 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2002. http://dx.doi.org/10.7567/ssdm.2002.pl-3.
Full textDOLAN, RAY J. "THE NEUROBIOLOGY OF EMOTION AND MOOD." In Proceedings of the International School of Biocybernetics. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776563_0008.
Full textDe Valois, Karen K. "Spatial vision based upon color differences." In Computational Vision Based on Neurobiology, edited by Teri B. Lawton. SPIE, 1994. http://dx.doi.org/10.1117/12.171146.
Full textStevenson, Scott B., Clifton M. Schor, and Lawrence K. Cormack. "Disparity tuning of cyclopean visual mechanisms." In Computational Vision Based on Neurobiology, edited by Teri B. Lawton. SPIE, 1994. http://dx.doi.org/10.1117/12.171145.
Full textOram, Michael W., and David I. Perrett. "Neural processing of biological motion in the macaque temporal cortex." In Computational Vision Based on Neurobiology, edited by Teri B. Lawton. SPIE, 1994. http://dx.doi.org/10.1117/12.171138.
Full textBonds, A. B. "Coding of inhibition in visual cortical spike streams." In Computational Vision Based on Neurobiology, edited by Teri B. Lawton. SPIE, 1994. http://dx.doi.org/10.1117/12.171134.
Full textReports on the topic "Neurobiology"
Copenhagen, David. Retinal Neurobiology and Visual Processing. Fort Belvoir, VA: Defense Technical Information Center, October 1996. http://dx.doi.org/10.21236/ada325859.
Full textLucas, Ashley. Neurobiology of Seasonal Life-history Transitions. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2508.
Full textMcGaugh, James L., Gary Lynch, and Norman M. Weinberger. Conference on the Neurobiology of Learning and Memory (3rd). Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada201631.
Full textGermain, Anne. Neurobiology of Sleep and Sleep Treatment Response in PTSD. Fort Belvoir, VA: Defense Technical Information Center, October 2009. http://dx.doi.org/10.21236/ada525916.
Full textGebhardt, Stefan. The neurobiology of depression and the dilemma of pain treatment. Science Repository Oü, October 2018. http://dx.doi.org/10.31487/j.nnb.2018.10.007.
Full textGermain, Anne. Neurobiology of Sleep and Sleep Treatments in PTSD (NOS-STIP). Fort Belvoir, VA: Defense Technical Information Center, October 2010. http://dx.doi.org/10.21236/ada537223.
Full textHenderson, Brian E. ,. M. D. Development of Structural Neurobiology and Genomics Programs in the Neurogenetic Institute. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/894898.
Full textSilman, Israel. XIth International Symposium on Cholinergic Mechanisms - Function and Dysfunction & 2nd Misrahi Symposium on Neurobiology. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada410482.
Full textMcGaugh, James L., Gary Lynch, Norman M. Weinberger, and Larry R. Squire. Conference on the Neurobiology of Learning and Memory (4th) Held in Irvine, California on 17-20 October 1990. Fort Belvoir, VA: Defense Technical Information Center, February 1992. http://dx.doi.org/10.21236/ada247174.
Full textIasevoli, Felice, Camilla Avagliano, Luigi D'Ambrosio, Annarita Barone, Mariateresa Ciccarelli, Giuseppe De Simone, Benedetta Mazza, Licia Vellucci, and Andrea de Bartolomeis. Dopamine dynamics and neurobiology of non-response to antipsychotics, relevance for Treatment Resistant Schizophrenia. A systematic review and critical appraisal. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2023. http://dx.doi.org/10.37766/inplasy2023.2.0104.
Full text