Academic literature on the topic 'Neuraminidase'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neuraminidase.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Neuraminidase"
Hammond, Alexandria J., Ulrike Binsker, Surya D. Aggarwal, Mila Brum Ortigoza, Cynthia Loomis, and Jeffrey N. Weiser. "Neuraminidase B controls neuraminidase A-dependent mucus production and evasion." PLOS Pathogens 17, no. 4 (April 5, 2021): e1009158. http://dx.doi.org/10.1371/journal.ppat.1009158.
Full textJost, B. H., J. G. Songer, and S. J. Billington. "Cloning, Expression, and Characterization of a Neuraminidase Gene from Arcanobacterium pyogenes." Infection and Immunity 69, no. 7 (July 1, 2001): 4430–37. http://dx.doi.org/10.1128/iai.69.7.4430-4437.2001.
Full textManco, Sonia, Fidelma Hernon, Hasan Yesilkaya, James C. Paton, Peter W. Andrew, and Aras Kadioglu. "Pneumococcal Neuraminidases A and B Both Have Essential Roles during Infection of the Respiratory Tract and Sepsis." Infection and Immunity 74, no. 7 (July 2006): 4014–20. http://dx.doi.org/10.1128/iai.01237-05.
Full textJost, B. Helen, J. Glenn Songer, and Stephen J. Billington. "Identification of a Second Arcanobacterium pyogenes Neuraminidase and Involvement of Neuraminidase Activity in Host Cell Adhesion." Infection and Immunity 70, no. 3 (March 2002): 1106–12. http://dx.doi.org/10.1128/iai.70.3.1106-1112.2002.
Full textTeuton, Jeremy R., and Curtis R. Brandt. "Sialic Acid on Herpes Simplex Virus Type 1 Envelope Glycoproteins Is Required for Efficient Infection of Cells." Journal of Virology 81, no. 8 (January 17, 2007): 3731–39. http://dx.doi.org/10.1128/jvi.02250-06.
Full textBaeza-Kallee, Nathalie, Raphaël Bergès, Victoria Hein, Stéphanie Cabaret, Jeremy Garcia, Abigaëlle Gros, Emeline Tabouret, Aurélie Tchoghandjian, Carole Colin, and Dominique Figarella-Branger. "Deciphering the Action of Neuraminidase in Glioblastoma Models." International Journal of Molecular Sciences 24, no. 14 (July 19, 2023): 11645. http://dx.doi.org/10.3390/ijms241411645.
Full textStadlbauer, Daniel, Xueyong Zhu, Meagan McMahon, Jackson S. Turner, Teddy J. Wohlbold, Aaron J. Schmitz, Shirin Strohmeier, et al. "Broadly protective human antibodies that target the active site of influenza virus neuraminidase." Science 366, no. 6464 (October 24, 2019): 499–504. http://dx.doi.org/10.1126/science.aay0678.
Full textMohan, Sankar, and B. Mario Pinto. "Exploration of the 150 cavity and the role of serendipity in the discovery of inhibitors of influenza virus A neuraminidase." Canadian Journal of Chemistry 96, no. 2 (February 2018): 91–101. http://dx.doi.org/10.1139/cjc-2017-0343.
Full textZhang, Jun-Yuan, Qian-Qian Chen, Jia Li, Lei Zhang, and Lian-Wen Qi. "Neuraminidase 1 and its Inhibitors from Chinese Herbal Medicines: An Emerging Role for Cardiovascular Diseases." American Journal of Chinese Medicine 49, no. 04 (January 2021): 843–62. http://dx.doi.org/10.1142/s0192415x21500403.
Full textHall, B. F., P. Webster, A. K. Ma, K. A. Joiner, and N. W. Andrews. "Desialylation of lysosomal membrane glycoproteins by Trypanosoma cruzi: a role for the surface neuraminidase in facilitating parasite entry into the host cell cytoplasm." Journal of Experimental Medicine 176, no. 2 (August 1, 1992): 313–25. http://dx.doi.org/10.1084/jem.176.2.313.
Full textDissertations / Theses on the topic "Neuraminidase"
Wheatley, Nicola. "Mapping the haemagglutinin and neuraminidase functions of the human parainfluenza virus type 3 haemagglutinin-neuraminidase protein." Thesis, University of Ottawa (Canada), 1991. http://hdl.handle.net/10393/7739.
Full textDriguez, Pierre-Alexandre. "Synthèse d'inhibiteurs de la neuraminidase grippale." Lyon 1, 1993. http://www.theses.fr/1993LYO10191.
Full textHorst, Gijsbertus Theodorus Johannes van der. "Identification and characterization of lysosomal neuraminidase." [S.l.] : Rotterdam : [The Author] ; Erasmus University [Host], 1993. http://hdl.handle.net/1765/13741.
Full textWohlbold, Teddy John. "The Influenza Virus Neuraminidase as a Vaccine Antigen and the Potential of Neuraminidase Antibodies to Protect Against Infection." Thesis, Icahn School of Medicine at Mount Sinai, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10746696.
Full textThe influenza virus continues to cause significant morbidity and mortality in humans, resulting in up to 50,000 deaths per year in the United States. Annual vaccination remains the recommended prophylaxis for influenza. However, vaccines must be reformulated to account for antigenic drift and, even when vaccines contain strains that antigenically match circulating strains, they display suboptimal efficacies. Two glycoproteins coat the surface of the influenza virus – the more abundant and immunodominant hemagglutinin (HA), which serves as the receptor-binding protein, and the neuraminidase (NA), an enzyme that functions to free budding viruses from infected cells. Current influenza virus vaccine strategies aim to elicit neutralizing antibodies against the HA, but past studies have demonstrated that neuraminidase inhibition titers are correlated with reduced illness and viral shedding in humans. Despite the accumulated evidence that an anti-NA immune response is beneficial, the NA content in vaccines is not standardized.
Here, the potential breadth of protection afforded by NA antibodies was investigated by studying the use of NA as a vaccine antigen and by characterizing broadly cross-reactive murine monoclonal antibodies against the NA. Using baculovirus-expressed, purified protein, it was demonstrated that vaccination with adjuvanted NA was sufficient to induce protection against lethal influenza virus challenge in mice. In the same study, the N1 NA content of inactivated influenza virus vaccines from different companies was found to be highly variable. Furthermore, in humans vaccinated with standard inactivated influenza virus vaccine, the induction of serum NA titers was significantly lower than that of HA titers. In the second part of this dissertation, panels of monoclonal antibodies were generated against the N8 NA of an emerging H10N8 influenza virus strain and against the NA of influenza B virus. Monoclonal antibodies against the influenza B virus NA displayed in vivo prophylactic and therapeutic protection in mice, robustly activated antibody-dependent cellular cytotoxicity (ADCC) in vitro, and displayed neuraminidase inhibition against an oseltamivir-resistant influenza B virus. As a whole, our data strongly suggest that targeting the influenza virus NA may be beneficial when designing novel influenza virus vaccines or antibody-based therapeutics.
da, Silveira Vieira da Silva Diogo. "Influenza neuraminidase assembly : Evolution of domain cooperativity." Doctoral thesis, Stockholms universitet, Institutionen för biokemi och biofysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-134470.
Full textInfluensa är en av de mest smittsamma sjukdomarna som drabbar människor och de flesta kan räkna med att bli infekterade många gånger under sin livstid. Influensaviruset attackerar främst luftvägarna, men kan även leda till t.ex. lunginflammation. De enskilda viruspartiklarna (virionerna) kan komma i olika former, men den vanligaste formen som används för att beskriva viruset är den sfäriska. På en virions yta så finns det två olika typer av membranproteiner, som kan liknas med två olika sorters spikar som sticker ut från viruset. Den ena ”spiken” kallas neuraminidas, eller bara kort för NA, och den andra för hemagglutinin (HA). När man har andats in ett influensavirus så kan viruset ta sig till de övre luftvägarna och vidare ner i luftstrupen för att där använda sig av HA för att ta sig in i en cell. Viruset använder sig sedan av cellen för att skapa många nya virioner, som tar sig ut ur cellen för att infektera fler celler. NA är det protein som virionerna använder sig av för att klyva sig loss från modercellen. Målet för avhandlingen var att studera NA och beskriva hur proteinet måste vara ihopsatt för att vara aktivt. NA har en uppbyggnad liknande en trädklunga, där fyra stycken identiska träd (med tillhörande rötter, stammar och trädkronor) går ihop och bildar en enda aktiv enhet, en s.k. tetramer. ”Rötterna” hos NA är den transmembrana domänen (TMD), den del av proteinet som sitter fast i influenaviruskroppen. ”Stammen”, eller stjälkdelen av NA, binder samman TMD med den största delen, huvuddomänen som motsvarar ”trädkronan”. Det är just huvuddomänen som är ansvarig för att klyva loss viruspartiklar från en modercell. Vi har i våra studier sett att det kan vara väldigt viktigt att TMD-domänerna går ihop i grupper om fyra för att hela NA ska kunna gå ihop i en tetramer och aktivt kunna klyva loss viruspartiklarna. När vi studerade TMD från olika influensavirus så märkte vi att vissa egenskaper hos TMD krävs för att de skulle kunna gå ihop, men också att dessa egenskaper inte fanns hos alla influensavirus. Virusen har evolverat över lång tid och har anpassat sig efter värdorganismerna (inklusive människan) och har hittat olika lösningar på problemet med att behöva bilda en tetramer. När vi gjorde ändringar i en TMD som vanligtvis gick ihop till en tetramer, och därmed förhindrade detta, så noterade vi att huvuddomänens funktion påverkades vilket ledde till att influensaviruset hade svårt att spridas. Vidare så har våra pågående studier på stjälkdelen visat att även denna del kan ha stor betydelse för tetrameriseringen av NA, speciellt i de fall där TM-domänen saknar egenskaper för att gå ihop. Avhandlingen tillför inte bara ny och viktig information till influensaforskningen, utan även potentiellt för framställandet av nya influensavacciner/-mediciner.
At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.
Rizzato, Vanessa Rodrigues. "Envolvimento da neuraminidase-1 na atrofia muscular." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/5/5138/tde-01122014-094857/.
Full textSialidosis, a severe neurosomatic disease, results from congenital neuraminidase-1 (Neu1) deficiency. This enzyme regulates the catabolism of sialoglycoconjugates in the lysosomes. Systemic and neurologic manifestations occur due to the sialoglycoconjugates accumulation. In the mouse model for Neu1 deficiency, the muscle histologic findings include extracellular matrix (ECM) expansion, due to abnormal fibroblast proliferation, muscle fibers invasion by ECM components, cytoplasm fragmentation, vacuolar formation and muscle atrophy. Nevertheless the mechanisms of muscle atrophy in Neu1 deficiency are not completely known. This study was designed to investigate Neu1 involvement in muscle atrophy process. Denervation of gastrocnemius muscle was performed by sectioning sciatic nerve from Neu1 deficient mice (Neu1 -/-) and from normal control Neu1 +/+; the animals were euthanized 0, 3, 7, 14 and 21 days after denervation. Denervated and control muscles were collected and submitted to several analysis: 1) histological; 2) autophagic vacuoles formation, performed by ultrastructural analysis and LC3 protein expression; 3) acid phosphatase reaction, lamp1 and cathepsin L protein expression, to analyze lysosomal activation; 4) collagen deposition and fibrous formation; 5) proteins involved with muscle trophism, Akt and GSK3b; 6) MuRF1 and Atrogin-1 gene expression; 7) MyoD protein expression; 8) Neu1, Neu2, Neu3 and Neu4 genes expression. Neu1 -/- mice presented decreased body and muscle weight comparing to Neu1 +/+ animals. Muscle fiber cross-sectional area was reduced in denervated muscles comparing to contralateral muscles. Neu1 -/- mice muscles presented basal atrophy and increase of endomisial and perimisial spaces, which became more evident after denervation. After 14 days of denervation, autophagosome formation was noticed on Neu1 +/+ and Neu1-/- animals. Cathepsin L protein levels were increased after 14 and 21 days of denervation, especially in denervated muscles from Neu1 -/- mice. Lamp1 protein expression was increased in Neu1-/- animals. Type III collagen protein levels were increased in Neu1-/- animals. There were no significant differences between MyoD protein levels. P-Akt, active form of Akt protein levels, decreased after 21 days of denervation, especially in denervated muscles from control group animals, indicating that protein synthesis is decreased. P-GSK3b, inactive form of GSK3b decreased in denervated muscles from Neu1 -/- and Neu1 +/+ animals, which indicates that this protein remained activated during muscle atrophy process. There were significant differences in Atrogin-1 and MuRF1 gene expression levels after 3 and 7 days of denervation. Neu1 -/- animals muscles presented a delayed Atrogin-1 response. Neu1 gene expression was increased in denervated muscles from Neu1 +/+ mice. These findings suggest that Neu1 seems to act in the regulation of muscle mass mainly by controlling the process of lysosomal system activation, but apparently without affecting autophagy
Neves, Juliana de Carvalho. "Envolvimento da neuraminidase-1 na regeneração muscular." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/5/5138/tde-06052014-091743/.
Full textNeuraminidase-1 (Neu1) participates in sialoglycoconjugates catabolism in lysosomes. Congenital Neu1 deficiency is the basis of sialidosis, a severe neurosomatic disorder associated with osteoskeletal deformities, hypotonia and muscle weakness. Mice with Neu1 deficiency (Neu1-/-) develop an atypical form of muscle degeneration characterized by abnormal fibroblast proliferation and expanded extracellular matrix (ECM), invasion of muscle fibers by fibroblast, cytosolic fragmentation, vacuolar formation and muscle atrophy. Despite muscle degeneration is well characterized in these animals, myogenesis has not been studied so far. The aim of this study was to evaluate the involvement of Neu1 in muscle regeneration process after cardiotoxin (CTX) injection in Neu1-/- mice and normal controls. CTX was applied in the right tibialis anterior muscle, and the animals were euthanized by cervical dislocation 1, 3, 5, 7, 10, 14, 21 and 28 days after injury. The muscles were analyzed through histology; cross-sectional area of regenerative muscle fibers; quantification of BrdU labeling; immunohistochemistry labelling for inflammation, regenerative fibers, and fibrosis; and gene and protein expression of muscle transcription factors. The data were compared and variances considered statistically significant in case p <= 0.05. In animals with Neu1 deficiency, both inflammatory process (mainly macrophagic response) and proliferative potential were increased in the initial stages, accompanied by overexpression of Pax7. We observed delay in muscle maturation characterized by higher expression of embryonic myosin later in muscle regeneration. MyoD and MyoG genes were overexpressed from 5 to 10 days after injury, though the expression of these proteins was reduced. At the end of muscle regeneration, reticulin deposition in ECM was increased, indicating fibrotic process. Neu1 seems to participate in all stages of muscle regeneration, since acute injury phase through the control of cell proliferation, towards muscle maturation, and at the final stages when it would regulate the deposition of ECM components
Mamuya, Nellie. "Synthesis and NMR studies of neuraminidase inhibitors." Thesis, The University of Arizona, 1996. http://hdl.handle.net/10150/291545.
Full textBarrere, Béatrice. "Inhibiteurs de synthèse des sialidases : études de leurs activités inhibitrices envers les sialidases d'origine bactérienne et virale et de leurs effets sur la multiplication des virus influenza." Lyon 1, 1995. http://www.theses.fr/1995LYO1T065.
Full textWang, Qinning. "Erysipelothrix rhusiopathiae : epidemiology, virulence factors and neuraminidase studies." University of Western Australia. Microbiology Discipline Group, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0043.
Full textBooks on the topic "Neuraminidase"
Collins, Kay R. Variation in the haemagglutinin-neuraminidase gene of human parainfluenza 3 virus. [s.l.]: typescript, 1994.
Find full textD'Agrosa, Raffaele Michael. The gbs galactosidase-neuraminidase-protective protein complex and associated lysosomal storage disorders. Ottawa: National Library of Canada, 1990.
Find full textKing, Samantha Jane. Epidemiology and evolution of pneumococcal neuraminidases. [s.l.]: typescript, 1999.
Find full textSedlacek, H. H. Tumor Therapy with Tumor Cells and Neuraminidase. S. Karger AG, 1987. http://dx.doi.org/10.1159/isbn.978-3-318-03410-3.
Full textTumor Therapy With Tumor Cells and Neuraminidase (Contributions to Oncology, Vol 27). S. Karger AG (Switzerland), 1987.
Find full textBodnaruk, Tetyana Daria Evhenia. Neuraminidase-1, a subunit of the elastin receptor, alters mitogenic growth factor receptors and down-regulates proliferation of arterial smooth muscle cells. 2006.
Find full textInfluenza Virus Sialidase A Drug Discovery Target. Birkhauser, 2010.
Find full textFederico, Antonio, and Silvia Palmeri. Oligosaccharidoses. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0057.
Full textAlexander, D. J., N. Phin, and M. Zuckerman. Influenza. Edited by I. H. Brown. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198570028.003.0037.
Full textNoris, Marina, and Tim Goodship. The patient with haemolytic uraemic syndrome/thrombotic thrombocytopenic purpura. Edited by Giuseppe Remuzzi. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0174.
Full textBook chapters on the topic "Neuraminidase"
Sewell, A. C. "Neuraminidase." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_2246-1.
Full textColman, P. M. "Neuraminidase." In The Influenza Viruses, 175–218. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0811-9_4.
Full textSewell, A. C. "Neuraminidase." In Springer Reference Medizin, 1741. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_2246.
Full textPedersen, Janice C. "Neuraminidase-Inhibition Assay for the Identification of Influenza A Virus Neuraminidase Subtype or Neuraminidase Antibody Specificity." In Avian Influenza Virus, 67–75. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-279-3_9.
Full textAruksakunwong, Ornjira, Thanyada Rungrotmongkol, Nadtanet Nunthaboot, and Supot Hannongbua. "Influenza Neuraminidase – Computational Studies." In Encyclopedia of Biophysics, 1044–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_239.
Full textPedersen, Janice C. "Neuraminidase-Inhibition Assay for the Identification of Influenza A Virus Neuraminidase Virus Subtype or Neuraminidase Antibody Specificity." In Methods in Molecular Biology, 27–36. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0758-8_3.
Full textVan Epps, Stacy. "Carboxylic-Acid-Based Neuraminidase Inhibitors." In Bioactive Carboxylic Compound Classes: Pharmaceuticals and Agrochemicals, 133–48. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527693931.ch10.
Full textColman, P. M. "Drugs Targeting Influenza Virus Neuraminidase." In Structure-Based Drug Design, 87–93. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9028-0_8.
Full textRussell, Rupert J., Steven J. Gamblin, and John J. Skehel. "Influenza glycoproteins: Hemagglutinin and neuraminidase." In Textbook of Influenza, 67–100. Oxford, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118636817.ch5.
Full textSriwilaijaroen, Nongluk, Christopher J. Vavricka, Hiromasa Kiyota, and Yasuo Suzuki. "Influenza A Virus Neuraminidase Inhibitors." In Methods in Molecular Biology, 321–53. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2635-1_21.
Full textConference papers on the topic "Neuraminidase"
LI, X., H. JANKOWSKI, S. BOONPATCHARANON, V. TRAN, X. WANG, and J. M. HEFFERNAN. "CLUSTERING NEURAMINIDASE INFLUENZA PROTEIN SEQUENCES." In 15th International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141919_0014.
Full textYan, Shaomin, and Guang Wu. "Description of evolution of neuraminidase from influenza A virus." In 2nd International Conference on Computer Vision, Image and Deep Learning, edited by Fengjie Cen and Badrul Hisham bin Ahmad. SPIE, 2021. http://dx.doi.org/10.1117/12.2604572.
Full textYan, Shaomin, and Guang Wu. "Description of evolution of neuraminidase from influenza A virus." In 2nd International Conference on Computer Vision, Image and Deep Learning, edited by Fengjie Cen and Badrul Hisham bin Ahmad. SPIE, 2021. http://dx.doi.org/10.1117/12.2604572.
Full textДешева, Юлия Андреевна, and Надежда Николаевна Петкова. "STUDY OF NEURAMINIDASE ANTIBODIES TO A(Н3N2) INFLUENZA VIRUS." In Психология. Спорт. Здравоохранение: сборник избранных статей по материалам Международной научной конференции (Санкт-Петербург, Декабрь 2021). Crossref, 2022. http://dx.doi.org/10.37539/psm300.2021.44.58.003.
Full textYoo, G., S. H. Kim, I.-W. Choi, and S. Y. Choi. "Diarylheptanoids isolated from Alpinia officinarum as novel influenza neuraminidase inhibitors." In GA – 70th Annual Meeting 2022. Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/s-0042-1759270.
Full textRuban, M., N. Chamberlain, Z. Mark, S. Bruno, A. Kumar, R. Chandrasekaran, D. Souza De Lima, and V. Anathy. "Redox Regulation of Influenza Neuraminidase by Protein Disulfide Isomerase A3." In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a3982.
Full textMatos, Aline, Thiago Sousa, Thiago Souza, Paola Resende, Milene Miranda, Maria Oliveira, Braulia Caetano, Cristiana Garcia, Fernando Motta, and Marilda Siqueira. "Ten years of consecutive influenza surveillance to neuraminidase inhibitors resistance Brazil." In IV International Symposium on Immunobiologicals & VII Seminário Anual Científico e Tecnológico. Instituto de Tecnologia em Imunobiológicos, 2019. http://dx.doi.org/10.35259/isi.sact.2019_32855.
Full textSingh, Dadabhai T., Rahul Trehan, Pradeep Ray, and Bertil Schmidt. "Phylogenetic Analysis of Neuraminidase Genes of H5N1 Isolates using HPC Technologies." In 2007 9th International Conference on e-Health Networking, Application and Services. IEEE, 2007. http://dx.doi.org/10.1109/health.2007.381652.
Full textTindal, David J., Jeffrey C. Dyason, Robin J. Thomson, and Mark von Itzstein. "A GRID STUDY OF THE HAEMAGGLUTININ-NEURAMINIDASE OF NEWCASTLE DISEASE VIRUS." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.566.
Full textKrüger, L., S. Handtke, K. Jahn, P. T. Kohler, J. Wesche, S. Hammerschmidt, and A. Greinacher. "Role of Neuraminidase A of S. pneumoniae on platelet-bacteria-interaction." In GTH Congress 2023 – 67th Annual Meeting of the Society of Thrombosis and Haemostasis Research – The patient as a benchmark. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0042-1760604.
Full textReports on the topic "Neuraminidase"
Perk, Shimon, Maricarmen Garcia, Alexander Panshin, Caroline Banet-Noach, Irina Gissin, Mark W. Jackwood, and David Stallknecht. Avian Influenza Virus H9N2: Characterization and Control Strategies. United States Department of Agriculture, June 2007. http://dx.doi.org/10.32747/2007.7709882.bard.
Full text