Dissertations / Theses on the topic 'Neural scaffold'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Neural scaffold.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kan, Ho Man. "The novel synaptic scaffold protein--SHANK /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?BICH%202002%20KAN.
Full textIncludes bibliographical references (leaves 78-91). Also available in electronic version. Access restricted to campus users.
Kueh, J. L. L. "Clinical neural scaffold engineering for olfactory ensheathing cells." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1346460/.
Full textWu, Hao. "Structural and functional characterization of scaffold protein par-3 /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?BICH%202008%20WU.
Full textFeng, Wei. "Structural studies of supramolecular complex assembly by neuronal scaffold proteins /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?BICH%202005%20FENG.
Full textHucknall, Angus M. (Angus Mitchell). "A self-assembling peptide scaffold functionalized for use with neural stem cells." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33396.
Full textIncludes bibliographical references (leaves 33-35).
The performance of a biological scaffold formed by the self-assembling peptide RADA16 is comparable to the most commonly used synthetic materials employed in the culture of neural stem cells. Furthermore, improvements in the performance of RADA16 have recently been made by appending the self-assembling peptide sequence with various functional motifs from naturally occurring proteins. The focus of this work is to further analyze the performance of these functionalized self-assembling peptide scaffolds when used for the culture of neural stem cells, and to characterize these newly developed materials for comparison with RADA16. The effect of the functional motifs on the structure of the peptide scaffold was evaluated with circular dichroism and scanning electron microscopy, and the mechanical properties of the peptide scaffolds were examined through theological analysis. The functionalized peptides were found to have lower percentages of beta-sheet structure as well as reduced storage moduli in comparison with RADA16. SEM images confirmed the ability of the functionalized peptides to form three-dimensional nanofiber scaffolds capable of encompassing, neural stem cells. Three-dimensional cell culture techniques were used to evaluate the ability of the functionalized peptide scaffolds to promote neural stem cell proliferation, and a scaffold formed by the combination of different functionalized peptides was found to increase the proliferation of neural stem cells in comparison to non-functionalized RADA 16.
by Angus M. Hucknall.
S.M.
Edgar, Yuji Egawa. "Biomaterials for neural cells replacement therapy." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199333.
Full textKoch, Britta. "Scaffold dimensionality and confinement determine single cell morphology and migration." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-194717.
Full textIshikawa, Masaaki. "Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225472.
Full textLora, Lucia. "Design and development of a polimeric tubular scaffold for peripheral nerve regeneration." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3423248.
Full textRIASSUNTO Le lesioni nervose periferiche costituiscono un problema clinico piuttosto comune, il quale inficia in modo significativo la qualità della vita dei pazienti. In caso di lesioni gravi con perdita di sostanza, al fine di colmare il gap tra il moncone prossimale ed il distale, il gold- standard prevede l’impianto di innesti nervosi autologhi utilizzando nervi sensoriali (ad es., nervo surale o nervo cutaneo antibrachiale). Tuttavia, criticità quali la morbidità del sito donatore, la perdita in funzionalità, la mancata corrispondenza dimensionale tra il nervo donatore ed il nervo lesionato oltre ad uno scarso recupero funzionale hanno spinto l'interesse verso l'identificazione di un approccio alternativo. Allo stato dell’arte, chirurghi e ricercatori stanno volgendo la loro attenzione verso innesti polimerici diversi (grafts) di natura sia biologica che artificiale. Infatti, lo sviluppo di neuroguide capaci di: a) creare un microambiente ideale per la rigenerazione assonale; b) fornire una protezione dall'infiltrazione di tessuto circostante; c) possedere un’efficacia analoga a quella garantita dall’innesto nervoso autologo; costituirebbe un vantaggio significativo nell’ambito della chirurgia del nervo periferico. Nel corso degli anni, sono stati studiati molti biomateriali di origine sia naturale che sintetica aventi caratteristiche differenti in termini di biodegradabilità. Tuttavia, considerando la qualità del tessuto rigenerato, non è ancora stata individuata una protesi più performante rispetto alle altre. L’obiettivo di questo studio è stato quello di allestire e studiare, sia in vitro che in vivo, le caratteristiche ed il potenziale rigenerativo di tre diverse neuroguide rispettivamente costituite da: alcool polivinilico (PVA); PVA ossidato 1% (PVA Ox 1%) e Fibroina della Seta (FS). Mentre l’impiego di PVA e FS per la realizzazione di grafts è già stato investigato in passato, il PVA Ox 1% (recentemente brevettato dal nostro gruppo di ricerca) costituisce un nuovo materiale per questo scopo. In parallelo, questo studio ha anche consentito di confrontare la qualità della rigenerazione assonale sostenuta da neuroguide diverse sia per origine (sintetica vs naturale) che per proprietà biodegradative (biodegradabili vs nonbiodegradabili). Dopo aver allestito le tre diverse soluzioni polimeriche, sono stati quindi preparati scaffolds sia discoidali che in forma di graft tubulare, utilizzati rispettivamente per i successivi studi in vitro e in vivo. Nell’ambito degli studi in vitro, è stata effettuata una caratterizzazione morfologica dei supporti mediante microscopia elettronica a scansione (SEM). Successivamente, la biocompatibilità e l'attività biologica dei tre differenti scaffolds è stata valutata utilizzando una linea di cellule di Schwann (SH-SY5Y). Le cellule sono state seminate sui supporti e la loro adesione e la proliferazione è stata valutata mediante saggio MTT oltre che SEM a due differenti end-point (3 e 7 giorni dalla semina). Per quanto riguarda lo studio in vivo, i graft tubulari sono stati impiantati in modelli animali (ratti Sprague- Dawley) di lesione nervosa periferica con perdita di sostanza (gap tra moncone prossimale e distale: 5 mm). A 12 settimane dalla chirurgia, è stato valutato il recupero funzionale del nervo sciatico; successivamente, gli animali sono stati sacrificati. Dopo dissezione, prima di procedere all’espianto, l'aspetto macroscopico degli innesti è stato attentamente osservato in situ. I campioni sono stati quindi prelevati e trattati per le successive analisi istologiche (ematossilina ed eosina) ed immunoistochimiche (anti-CD3; anti-S100) nonché per ulteriori analisi di microscopia elettronica a scansione (TEM). L'obiettivo è stato quello di valutare la qualità del tessuto rigenerato evidenziando eventuali differenze di efficacia tra i tre tipi di grafts; a tal fine, anche l'analisi istomorfologica si è rivelata fondamentale, permettendo essa di quantificare gli assoni (mielinici vs amielinici) in diverse porzioni del campione (porzione prossimale vs centrale vs distale). Il nervo sciatico controlaterale è stato usato come controllo. Considerando i risultati degli studi in vitro, le immagini al SEM hanno mostrato come i supporti in PVA e FS mostrino una superficie liscia e regolare; al contrario, una certa ruvidità è stata notata osservando l’ultrastruttura degli scaffold discoidali in PVA Ox 1%. Nonostante il diverso aspetto ultrastrutturale dei supporti, esso non sembra influenzare l'interazione con le cellule. Il PVA (sia nativo che ossidato) non sostiene l'adesione e la proliferazione cellulare; infatti, sia le analisi al SEM che il saggio MTT non hanno identificato la presenza di cellule SH-SY5Y dopo 3 e 7 giorni dalla semina. Questo risultato può essere attribuito alla elevata idrofilia degli idrogeli Al contrario, gli scaffold in FS sono adeguati per promuovere la crescita delle SH-SY5Y. Per quanto riguarda lo studio in vivo, tutti i graft mostrato buone caratteristiche in termini di manipolabilità, essendo facilmente suturabili e dimostrando anche una adeguata resistenza allo strappo; gli scaffold in PVA appaiono più flessibile rispetto alle guide in FS. Dopo 12 settimane dalla chirurgia, tutti gli animali hanno mostrato un certo recupero funzionale dell’arto operato; in particolare, tutti distribuivano il proprio peso corporeo anche sulla zampa posteriore. Pur non zoppicando, gli animali impiantati con PVA e SF mostravano talvolta degli spasmi durante la deambulazione, al contrario, gli animali impiantati con graft in PVA Ox 1% esibivano un movimento normale. Al momento della dissezione, i tre graft erano ancora chiaramente identificabili. Non è stata riscontrata alcuna dislocazione degli innesti o formazione di neuroma in corrispondenza dei monconi; inoltre, la trasparenza delle tre neuroguide ha permesso di identificare la presenza di un tessuto rigenerato al loro interno. Successivamente, sono state effettuate analisi istologiche ed immunoistochimiche per valutare la qualità della rigenerazione assonale. Preliminarmente, mediante colorazione con ematossilina ed eosina (sezione trasversale della porzione centrale) è stato possibile mettere in evidenza l'integrità morfologica della struttura. Procedendo dalla periferia della sezione verso l'interno sono riconoscibili: una capsula fibrosa esterna; il graft; ed il tessuto neo-rigenerato, omogeneo e denso, nel mezzo. La biocompatibilità degli innesti è stata verificata mediante analisi immunoistochimica; la scarsa presenza di cellule CD3+ ha dimostrato l'assenza di reazioni infiammatorie gravi riconducibili all’impianto. Contestualmente, l’elevata presenza di elementi S100+ riscontrata in tutti i campioni ha comprovato una evidente rigenerazione assonale. In parallelo, la morfologia tipica del tessuto nervoso periferico è stata altresì evidenziata mediante colorazione con Blu di Toluidina mediante la quale è stato considerato anche l'aspetto dei monconi prossimale e distale. Sebbene tutti i campioni supportino il recupero della lesione, alcune differenze possono essere riscontrate tra i tre gruppi sperimentali; questi risultati sono stati confermati anche dalle micrografie al TEM. L'analisi morfometrica dei campioni ha valutato il numero totale di assoni/nervo e la loro densità (assoni / μm2); per ogni innesto sono state considerate le sezioni prossimale, centrale e distale. I dati raccolti hanno dimostrato che il PVA Ox 1% assicura un risultato migliore nella rigenerazione assonale rispetto agli innesti non biodegradabili in PVA, il quale tra i tre gruppi è risultato essere quello con l’outcome inferiore. I risultati di questo studio hanno mostrato che, in caso di neurotmesi con perdita di sostanza, tutti i graft allestiti (PVA; PVA Ox 1% e FS) promuovono la rigenerazione del nervo. Considerando la qualità del tessuto rigenerato, sono stati osservati dei risultati migliori con graft in PVA Ox 1% rispetto a quelli ottenuti da neuroguide in PVA e FS.
Sang, Yanhua, and 桑艳华. "Treatment of intracerebral hemorrhage with self-assembling paptide nanofiber scaffold and neural stem cells in both normotensive and hypertensive rats." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hdl.handle.net/10722/197836.
Full textLi, Witharana Wing Kar. "Non-Boolean characterization of Homer1a intranuclear transcription foci." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Neuroscience, c2011, 2011. http://hdl.handle.net/10133/3402.
Full textxvi, 125 leaves : ill. ; 29 cm
Vojníková, Michaela. "Biokeramický skafold pro vedení nervů připravený metodou freeze-casting." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-444536.
Full textHernandez, Gomez Yuriko Suemi. "Nanocomposite scaffolds and biomimetic peptides in neural regenerative medicine." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426354.
Full textThe incapacity of injured adult central nervous system to restore damaged neuronal circuitry and the large peripheral nervous system nerve defect inability to be naturally regenerated are a critical medical and social issue. An emerging approach in neuronal regenerative medicine is the use of native extracellular stimuli at nano-scale level influencing cell growth, differentiation and regeneration. Our biomimetic nanosystems mimic as much as possible the nanotopographic, conductive features and guidance cues of the neuronal extracellular environment. They are made of a freestanding and biocompatible nanocomposite scaffold, combining conductive, mechanical and topographical feature of carbon-based nanomaterials with the biocompatible properties of the poly-L-lactic acid (PLLA) matrix. Moreover, biomimetic peptides have been developed deriving them from neuronal proteins involved in the control of neurite outgrowth and axon pathfinding. In recent work from our team, the combination of the nanocomposite scaffold and the peptides proved to enhance neuronal differentiation of a human neuroblastoma cell line and to promote per se neural differentiation of human multipotent stem cells, even in the absence of exogenously added neurotrophins. In my PhD project I further developed such biomimetic nanosystems. About the scaffold, we checked the biocompatibility and effect on neuronal differentiation of varying types and concentration of nanofiller. We increased from 0.25 to 5% CNTs dispersed in the PLLA-matrix to improve electrical conductivity and nanoroughness of our nanocomposite scaffold. The enhanced CNTs concentration doesn’t affect cell proliferation, viability and adhesion while promoting neurite elongation. Moreover, we tested the same range of carbon nanohorns (CNHs) and reduced graphene oxide (RGO) dispersed in the PLLA matrix and proved they are as biocompatible as CNTs. Interestingly, 5%RGO has an inductive effect on neuronal differentiation. In last months, 3D printing has been used for patterned scaffold that allow to control the cell growth direction. About biomimetic peptides, we focused on the characterization of novel peptides sharing a conserved motif to better reproduce neuronal biochemical cues. These peptides are derived from the Ig-like domain of a number of proteins playing important roles in neuronal differentiation and axon elongation: CHL1, Neurofascin, NrCAM, DCC, ROBO2 and 3, Contactin 1, 2 and 5. All such peptides were able to promote neuritogenesis and neuronal differentiation of SH-SY5Y cells, with efficacy similar to previously tested peptides. In order to shed light on the mechanism by which our peptides act, we studied L1-A peptide in comparison to L1CAM extracellular domain it is derived from. As negative controls we used a scrambled and mutant version of the L1-A peptide. In silico simulations and in vitro evidence suggest an agonist-antagonist mechanism for our peptides: L1-A peptide binds L1CAM and exerts the same neuritogenic effect of the protein acting as L1CAM’s agonist; scrambled and mutant peptides bind the protein and inhibit the L1CAM homophilic binding, but they are not able to activate the signalling intracellular pathway leading to neuronal differentiation, acting as antagonists of L1CAM. In conclusion, our new nanocomposite scaffold and biomimetic peptides are potential tools for neuronal regenerative medicine, even if further investigations are needed to check their effect in combination.
Ueda, Erica (Erica Ann). "Neural stem cell differentiation in collagen scaffolds for retinal tissue engineering." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44853.
Full textIncludes bibliographical references (p. 123-125).
Rat neural stem cells (NSCs) were cultured in monolayer or in porous collagen scaffolds and exposed to neurogenic or non-neurogenic medium to determine the effects on neural differentiation and neurite growth. Nestin, [beta]III-tubulin, and GFAP expression were determined using immunofluorescent techniques, and the neurite length was measured. NSCs differentiated into neurons, with actively growing neurites, and astrocytes when cultured in differentiation medium (DM) or neurogenic medium (NM). NSCs cultured in monolayer expressed more nestin and III-tubulin and had significantly longer neurite extensions than NSCs cultured in collagen scaffolds. Laminin coated scaffolds promoted the attachment of NSCs to the scaffold struts and resulted in a more even distribution of nestin and [beta]III-tubulin positive cells throughout the scaffold. Overall, NSCs cultured in DM for at least 14 days resulted in the most neuronal differentiation and neurite growth.
by Erica Ueda.
S.M.
Glasmacher, B., AL Halabi F, O. Gryshkov, A. Avakian, and О. Г. Аврунін. "Cross-linked alginate structures for engineering of scaffolds for neural tissue engineering." Thesis, Prague, Czech Republic, 2018. http://openarchive.nure.ua/handle/document/8334.
Full textDai, Xizi. "Fiber Scaffolds of Poly (glycerol-dodecanedioate) and its Derivative via Electrospinning for Neural Tissue Engineering." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1852.
Full textCaswell, Patrick Tomas. "Subcellular distribution and function of the neuronal JNK signalling pathway scaffold protein JIP3." Thesis, University of Leicester, 2004. http://hdl.handle.net/2381/29689.
Full textAlcobia, Daniel de Souza. "Produção de nanofibras alinhadas de polímeros biodegradáveis para crescimento e regeneração de células neurais." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/46/46136/tde-16012014-085947/.
Full textElectrospinning is a celebrated technique of polymer processing, able to produce fibers with nanometric diameter. Common assembly of electrospinning apparatus allows collection of random fibers in a non-woven matt. Several modifications on this assembly enable different fiber morphologies to be obtained. Such modifications are revised and discussed in this work. In the production of cell growth scaffolds, its interesting that some anisotropy is incorporated in the medium. Therefore, an electrospinning apparatus capable of producing aligned fibers was constructed. Variation of processing parameters of said apparatus enabled different alignment qualities of fibers to be attained for two biodegradable polymers. Many parameters influenced on the quality of said alignment; fiber collection speed, however, proved more impacting, in accordance with literature data. Fiber morphology was assessed in regard to its diameter with the aid of MEV micrographs and ImageJ software. Furthermore, assessment of fiber alignment quality was sought. For this matter, it has been developed a quantification methodology for fiber alignment quality, based on micrographs and ImageJ\'s FFT tool. The proposed methodology was able to objectively and consistently rank fiber alignment quality, even when visual analysis (used as reference) failed to do so. This methodology was incorporated in a plugin for ImageJ, via Java script algorithm. With the aid of this plugin it was feasible to process several micrographs, taken from electrospun mats at different spots and magnifications. This helped create statistics about obtained results of fiber alignment quality, on an unprecedented approach in written literature. Electrospun mats with varying quality in fiber alignment were used as substrate in the culture of neural precursor cells from neurospheres to assess the influence of contact guidance on migration and differentiation of such cells
Ham, Trevor Richard. "Covalent Growth Factor Tethering to Guide Neural Stem Cell Behavior." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1555347467862553.
Full textAfzal, Muhammad Furqan. "Robust Encoding of Aperiodic Spatiotemporal Activity Patterns in Recurrent Neural Networks." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1458900169.
Full textCirstea, Teodor-Matei. "Controlling the electrospinning of nanofibrous polymer scaffolds for neuronal tissue engineering." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:65994436-7b4b-4969-a420-a81e109d96d1.
Full textVacanti, Nathaniel (Nathaniel Martin). "Investigation of electrospun fibrous scaffolds, locally delivered anti-inflammatory drugs, and neural stem cells for promoting nerve regeneration." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59884.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 79-82).
The organization and intricacy of the central and peripheral nervous systems pose special criteria for the selection of a suitable scaffold to aid in regeneration. The scaffold must have sufficient mechanical strength while providing an intricate network of passageways for axons, Schwann cells, oligodendrocytes, and other neuroglia to populate. If neural regeneration is to occur, these intricate passageways must not be impeded by macrophages, neutrophils, or other inflammatory cells. Therefore it is imperative that the scaffold does not illicit a severe immune response. Biodegradable electrospun fibers are an appealing material for tissue engineering scaffolds, as they strongly resemble the morphology of extracellular matrix. In this study, electrospun fibers composed of poly(L-lactic acid) (PLLA) and polycaprolactone (PCL) were prepared with and without the steroid anti-inflammatory drug, dexamethasone, encapsulated. Histological analysis of harvested subcutaneous implants demonstrated the PLLA fibers encapsulating dexamethasone (PLLA/dex fibers) evoked a much less severe immune response than any other fiber. These findings were supported by in vitro drug release data showing a controlled release of dexamethasone from the PLLA/dex fibers and a burst release from the PCL/dex fibers. The ability of the PLLA/dex fibers to evade an immune response provides a very powerful tool for fabricating tissue engineering scaffolds, especially when the stringent demands of a neural tissue engineering scaffold are considered. Structural support and contact guidance are crucial for promoting peripheral nerve regeneration. A method to fabricate peripheral nerve guide conduits with luminal, axially aligned, electrospun fibers is described and implemented in this study. The method includes the functionalization of the fibers with the axonal outgrowth promoting protein, laminin, to further enhance regeneration. The implantation of stem cells at the. site of a spinal cord or peripheral nerve lesion has been shown to promote nerve regeneration. Preliminary work to isolate and culture pluripotent, adult neural stem cells for seeding on the above mentioned scaffold is also described here.
by Nathaniel Vacanti.
S.M.
Fendler, Cornelius [Verfasser]. "From 2D to 3D - Neurite Guiding Scaffolds for Designer Neuronal Networks : Von 2D zu 3D - Neurit lenkende Zellträger für Designer-neuronale Netzwerke / Cornelius Fendler." Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2019. http://d-nb.info/1221084313/34.
Full textLATTANZIO, ETTORE. "New polymer candidates as components of drug delivery systems, diagnostic media or scaffolds for neural and epithelial cell culturing." Doctoral thesis, Università degli Studi di Milano, 2008. http://hdl.handle.net/2434/60991.
Full textNasir, Wafaa. "Effect of Topography on Mouse Embryonic Stem Cells During Pluripotency and Neural Differentiation." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1533098386697352.
Full textPark, Do young. "Robust Detection, Visualization, Recognition, and Analysis of Cytoskeletal Structures in Fibrillar Scaffolds from 3-Dimensional Confocal Images." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1500620844897981.
Full textTegas, Antonio Vasile. "Finite element modeling of flow/compression-induced deformation of alginate scaffolds for bone tissue engineering." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10209/.
Full textForlivesi, Claudio. "Biomateriali e 3D bioprinting nella rigenerazione neurale." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17888/.
Full textScapin, Giorgia. "Carbon nanotube-polymer scaffolds and biomimetic peptides as a system to promote human cell differentiation toward the neuronal phenotype: analysis of a model cell line and circulating multipotent cells." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424113.
Full textI nanotubi di carbonio (CNTs) sono i candidati ideali per lo sviluppo di supporti volti a promuovere la rigenerazione neurale grazie alla loro abilità di condurre gli stimoli elettrici e alla loro nanotopografia in grado di mimare l'ambiente neurale. Questo lavoro riguarda lo sviluppo di supporti nanocompositi costituiti da CNTs dispersi in una matrice di acido polilattico (PLLA) e quindi in grado di combinare le caratteristiche nanotopografiche e di conduttività dei CNTs con la biocompatibilità del PLLA. Tali supporti, sono risultati essere in grado di supportare la crescita e il differenziamento delle cellule neuronali SH-SY5Y in modo migliore rispetto al solo PLLA. Al fine di mimare gli stimoli guida dell'ambiente neurale, sono stati sintetizzati anche dei peptidi biomimetici ricavati da specifici motivi regolativi delle proteine L1CAM e LINGO1, le quali sono coinvolte nel controllo dell'accrescimento neuritico. Entrambi i peptidi non hanno dimostrato effetti negativi sulla vitalità e la proliferazione cellulare, promuovendo invece il differenziamento neuronale in modo sequenza specifico e con i maggiori effetti quando utilizzati a concentrazione 1 uM. Inoltre, quando usati in combinazione, supporti e peptidi sono in grado di agire in modo sinergico e di aumentare ulteriormente il differenziamento cellulare. Successivamente, al fine mimare al meglio l'ambiente neurale, la matrice CNT-PLLA è stata elettrospinnata in fibre di dimensione submicrometrica con lo scopo di rappresentare i processi neuronali e la componente collagenosa della matrice extracellulare. Tali supporti si sono rivelati essere biocompatibili e in grado di promuovere la formazione di nuovi neuriti che si allungano seguendo l'orientamento delle fibre del supporto. Dal momento che le cellule sono influenzate dalla topografia del supporto, l'allineamento delle fibre suggerisce la possibilità di poter ottenere una crescita neuritica polarizzata. Inoltre, le proprietà neuritogeniche del supporto aumentano quando il peptide derivato da LINGO1 viene aggiunto al terreno di coltura; questi risultati rappresentano un buon punto di partenza per sviluppare supporti più avanzati a seguito della funzionalizzazione con tale peptide. In aggiunta, cellule circolanti multipotenti umane (hCMCs) sono state coltivate sui supporti e trattate con i peptidi al fine di determinare se tale fonte di cellule staminali autologa ed accessibile sia capace di differenziazione neuronale grazie soltanto alle caratteristiche dei supporti e dei peptidi. I supporti CNT-PLLA e la rispettiva versione elettrospinnata sono risultati essere adatti all'adesione e alla crescita delle hCMCs, mostrando buoni livelli di biocompatibilità; inoltre, le hCMCs coltivate sui supporti hanno mostrato caratteristiche tipiche delle cellule neuronali come lunghe protrusioni neuritiche terminanti con strutture a forma di ventaglio simili ai coni di crescita. I supporti inoltre promuovono l'espressione di marcatori tipici del lignaggio neuronale. Anche i peptidi si sono rivelati essere in grado di influenzare la morfologia cellulare e di upregolare marcatori neuronali. Questi risultati suggeriscono che le hCMCs sono capaci di acquisire un commitment neuronale solo grazie alle caratteristiche dei supporti e dei peptidi e senza l'ausilio dei fattori di crescita che sono tradizionalmente usati per promuovere il differenziamento neuronale di cellule staminali. Sono necessari ulteriori studi riguardanti la composizione e geometria dei supporti, funzionalizzazione con i peptidi e condizioni di coltura per acquisire una completa differenziazione neuronale e controllare il tipo neuronale ottenuto; ma tale sistema sembra essere un buon punto di partenza per progettare supporti trapiantabili per promuovere la rigenerazione neurale. Sarebbe interessante poter valutare la trasmissione sinaptica e le proprietà fisiologiche delle cellule cresciute sui supporti così come utilizzare tali supporti per stimolare elettricamente le cellule e valutare un eventuale miglioramento nel differenziamento.
Kimura, Koji. "Hyperpolarization-activated, cyclic nucleotide-gated HCN2 cation channel forms a protein assembly with multiple neuronal scaffold proteins in distinct modes of protein-protein interaction." Kyoto University, 2004. http://hdl.handle.net/2433/145287.
Full textGuza, Xhenifer. "Interfacce neurali biofunzionali: materiali e dispositivi biomedicali innovativi per la diagnosi e la cura di patologie del sistema nervoso centrale." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textCrestani, Thayane. "Matrizes de nanofibras alinhadas com fator de crescimento epidermal incorporado como suporte eficiente para a diferenciação de células-tronco em células neurais." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/143491.
Full textDamage to the central nervous system (CNS) results in loss of axonal connections and motor and sensory functions. One of the strategies for its repair is the transplantation of mesenchymal stem cells (MSCs). However, this requires a suitable application route. Accordingly, the use of scaffolds support the growth of MSCs and, when incorporated with growth factors, optimize the regeneration process. The purpose of this study was to evaluate the neural differentiation of MSCs cultured on nanofiber matrices oriented with epidermal growth factor (EGF) incorporated. Aligned scaffolds were produced by electrospinning emulsion and evaluated according to their degradation, the morphology and diameter of the nanofibers, and release of EGF from the nanofibers. MSCs used were from human exfoliated deciduous teeth (SHED). These cells were cultured on the scaffolds and evaluated according to biological tests: adhesion, viability, proliferation, cytotoxicity and neural differentiation. The aligned control scaffolds (AC) containing EGF (AE) presented similar morphology, diameter of nanofibers and degradation time. Based on the total EGF present in the scaffold AE, 90.14% was released after 28 days. The cytoskeleton and the core of the MSCs cultured on scaffolds AC and AE were more aligned and elongated when compared to the MSCs grown on plate wells (control). MSCs adhered more to matrices AE when compared to matrices AC, although proliferation and cell viability were similar, except after 72 hours. In this period, the viability of the control group was higher when compared to the rest of the groups. Scaffolds AC and AE were not toxic to MSCs. In regard to the results of neuro-differentiation, the expression of nestin and neurofilament was much higher in all groups than the control group. The expression of βIII tublin and GFAP was higher in all differentiated groups than the control group. Most of the MSCs grown in matrices AC and AE, induced or not to neural differentiation, showed voltage-dependent sodium currents. The maximum value of conductance of these groups was higher for the cells in all groupscompared to the control group, where the cells were not differentiated. Therefore, oriented nanofiber matrices induce neural differentiation of MSCs into functional neurons both in the absence and in the presence of incorporated EGF. The matrices AE also showed improved cell adhesion. Thus, these matrices are a possible strategy for optimizing the regeneration of neurologic lesions.
Liu, ChenWu, and 劉真吾. "Biologically Scaffold-Based Neural Plasticity in Spinalized Rats." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/68931830159166936591.
Full text國防醫學院
生物及解剖學研究所
99
Axonal regeneration and glial remyelination are major problems of spinal cord injury (SCI) therapy in clinical. In references, glial scar produced by activated astrocyte after SCI is the primary target need to be solved. This study planned to use gelatin/collagen I (GC-I) membrane, a degradable biocomposite, as the glial scar replace strategy to provide an orderly environment for spinal cord injury repair. The aim of this study is to determine whether the neural plasticity can be manipulated by GC-I membrane in SCI rats. This experiment designed four groups included lesion SCI covered with GC-I membrane, lesion control, normal cord covered with GC-I membrane and normal control. Results of this study reveal the injured spinal cord covered with GC-I membrane group shown the increase of Glial fibrillary acidic protein (GFAP) (1 week) and Neurofilament (4 weeks) expression compared with lesion control group. According these evidences, GC-I membrane prevented the glial scar formation, and nerves seems had regrowth along the GC-I membrane at lesion site in SCI plus GC-I membrane group after 4 weeks. That provide the feasibility of the GC-I membrane using in SCI repair. Summarize of this study, the GC-I membrane is a suitable biological scaffold for axonal regeneration in spinalized rats.
Vieira, Tânia Sofia dos Santos. "Development of a new nanostructured scaffold for neural stem/progenitor cell transplantation." Doctoral thesis, 2017. http://hdl.handle.net/10362/29479.
Full textSousa, Joana Patrícia Marques de. "Nanofibras eletrofiadas compósitas com grafeno para regeneração neural." Master's thesis, 2018. http://hdl.handle.net/10773/25878.
Full textIn recent years, tissue engineering (TE) has emerged as a promising approach to complete the deficient natural regeneration processes of the nervous systems and consequently attenuate some devastating physical, psychological and social consequences for patients worldwide. The success of neural TE strategies deeply rely on the combination of biomaterials with advanced nanofabrication techniques towards the fabrication of fibrous scaffolds able to present a biomimetic topography and a high surface area/volume ratio capable of enhancing the cell response. The excellent physicochemical properties of carbon-related nanomaterials, such as graphene, have encouraged their exploitation for neural regeneration. Complementary to the ground-breaking electrical, optical and mechanical properties of graphene, graphene oxide (GO) presents a highly oxygen functionalized surface, which impart a hydrophilic character to the material and consequently leads to excellent biologically features. Thus, in this work, we fabricated a wide range of composite electrospun polycaprolactone-gelatin-GO scaffolds to study the influence of concentration, size and reduction level of GO on the morphological, mechanical, chemical properties and biocompatibility of the fibres. In general, all composites showed morphological, mechanical and wettability properties compatible with neuronal-like cell cultures. The scaffold with reduced GO nanosheets showed the best results in the cell culture with SH-SY5Y cells. Viability results encourage cell cultures greater than seven days, electrical stimulation tests and/or addition of differentiation factors
Mestrado em Materiais e Dispositivos Biomédicos
Koch, Britta. "Scaffold dimensionality and confinement determine single cell morphology and migration." Doctoral thesis, 2015. https://tud.qucosa.de/id/qucosa%3A29189.
Full text"Development of a Biomimetic Hydrogel Scaffold as an Artificial Niche to Investigate and Direct Neural Stem Cell Behavior." Thesis, 2012. http://hdl.handle.net/1911/70242.
Full textLevesque, Stephane. "Synthesis of a cell-adhesive dextran scaffold crosslinked with protease-susceptible oligopeptides for use in neural tissue engineering applications." 2006. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=449828&T=F.
Full textChao, Che-Wei, and 趙哲瑋. "PartI: The effect of laminin surface - modified silica nanofiber scaffold on neural stem cell differentiationPartII: Neuroprotective effect of EGCG on LPS - induced Parkinson''s disease in rats." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/18176000070437979542.
Full text中原大學
奈米科技碩士學位學程
105
PartI: Electrospun fibrous scaffolds have been widely applied in tissue engineering. The objective of this study was developing aligned and random silica nanofiber scaffolds with and without laminin to evaluate the potential of rat neural stem cells (rNSCs) for neural differentiation. Herein, we used various methods such as trypan blue exclusion test, MTS assay, real-time polymerase chain reaction, and immunocytochemistry to evaluate the effects of the scaffolds on cell adhesion, cellular viability, and neuron-specific gene expression of the cells. The results show that the rNSCs cultivated on all groups of scaffolds were able to adhere. More importantly, fluorescence microscopy images illustrated that the scaffold with aligned 2-laminin (A2/L) fibers greatly increased the average neurite length and directed neurite extension of differentiated rNSCs along the fiber. Gene expression analysis demonstrated that the highest expression of neural-related genes, tuj1 was observed in rNSCs cultured on A2/L scaffolds. Other results indicated that the modification of laminin could enhance the glial differentiation of the rNSCs and it was independent of the fiber alignment. Based on the experimental results, the aligned nanofibrous silca scaffold with laminin could be used as a are superior candidates in neural tissue engineering. PartII: Parkinson’s disease (PD) is a common neurodegenerative disorder, which is characterized by the selective and progressive death of dopaminergic (DA) neurons in the substantia nigra. Increasing evidence suggests that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for PD. (-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol in green tea, has been known to possess antioxidant, anticancer, and anti-inflammatory properties. We Used liposome as a drug carrier, which can prolonged release of the EGCG. The aim of this study was to investigate the neuroprotective effect of liposome-VE-EGCG in a rat model of PD. Microglial activation and the injury of dopaminergic neurons were induced by LPS intranigral injection. Animal behavioral tests and biochemical assays were performed to evaluate the dopamine neuron degeneration and neuroprotective effects of liposome-VE-EGCG. Liposome-VE-EGCG significantly reduced amphetamine-induced rotational behavior in LPS-lesioned rats after 4 weeks. Furthermore, Liposome-VE-EGCG significantly decreased TNF-α levels, a marker of neuroinflammation in PD rats compared with saline group. These findings suggest that liposome-VE-EGCG exerts neuroprotection against LPS-induced dopaminergic neurodegeneration, and TNF-α.Thus EGCG represents a potent and useful neuroprotective agent for inflammation-mediated neurological disorders.
Rodriguez, Alexandra Laurence. "Engineering novel, nanofibrous scaffolds to promote neural regeneration in parkinson's disease." Phd thesis, 2015. http://hdl.handle.net/1885/155182.
Full textChen, Rui-Da, and 陳睿達. "Sulfonated Polyaniline Scaffolds for Neural Differentiation of PC12 Cells under Electrical Stimulation." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/v7ha38.
Full text中原大學
奈米科技碩士學位學程
107
Sulfonated polyaniline was synthesized by oxidative polymerization and PC12 cell was cultured on the film of sulfonated polyaniline in this experiment, this study would observe the influences on the differentiation of PC12 cell by controlling the voltages and amount of sulfonate group in polyaniline chain Proceeding the structure identification by Fourier Transform Infrared Spectrometer and Elemental analysis, measuring the properties with Contact Angle, Cyclic Voltammetry and Electric Conductivity, this study found out sulfonated polyaniline had reversible doping and reversible reduction-oxidation which was known as a characteristic of conductive polymer. For further research about the effects of neuron regeneration, PC12 cell was cultured on material of sulfonated polyaniline, the adhesion rate and cell viability increased as sulfonation rate had increased under the experiments of adhesion and cell viability. After calculating neurite length by microscope and immunofluorescence, the best differentiation effects came from the sulfonated polyaniline cotted with laminin.
Suri, Shalu. "Photopolymerizable scaffolds of native extracellular matrix components for tissue engineering applications." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-05-728.
Full texttext
Smith, I., M. Haag, Christopher I. Ugbode, D. Tams, Marcus Rattray, S. Przyborski, A. Bithell, and B. J. Whalley. "Neuronal-glial populations form functional networks in a biocompatible 3D scaffold." 2015. http://hdl.handle.net/10454/7742.
Full textMonolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50 Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50 Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems.
Khadem, Mohtaram Nima. "Development of Multiscale Electrospun Scaffolds for Promoting Neural Differentiation of Induced Pluripotent Stem Cells." Thesis, 2014. http://hdl.handle.net/1828/5758.
Full textGraduate
nkhadem@uvic.ca
Monteiro, Gary Albert. "Tuneable collagen scaffolds for the directed differentiation of embryonic stem cells toward neural lineages." 2010. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000052137.
Full text"Regulation of neuronal RhoA guanine-nucleotide exchange factor, Tech, and its interaction with synaptic scaffold protein, MUPP1." THE JOHNS HOPKINS UNIVERSITY, 2008. http://pqdtopen.proquest.com/#viewpdf?dispub=3311846.
Full textKočí, Zuzana. "Mezenchymální stromální buňky a biologické scaffoldy pro regeneraci nervové tkáně." Doctoral thesis, 2018. http://www.nusl.cz/ntk/nusl-389793.
Full textYi, Wan-Lin, and 易宛霖. "Utilizing femtosecond laser and aligned electrospinning method to fabricate 2D and 3D scaffold for neuron cell line PC12." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/26227438068753053381.
Full text國立交通大學
應用化學系碩博士班
104
The communication in the neuron network is still a mystery. We expect to fabricate specific scaffold to induce PC12 growth so that we can easily survey the characteristics of neuron network. Herein, we fabricate 2D scaffold by femtosecond laser system and 3D scaffold by aligned electrospinning method. In 2D scaffold fabrication, we used glass substrate coated by cytophobic MPC polymer and utilized femto second laser system to ablate the MPC polymer in specific part. Then, poly-L-Lysine coating change the cytophilicity of glass surface. In 3D scaffold fabrication, we chose a kind of biocompatible material PLA as our model. Combining electrospinning with aluminium hollow collector and applied electron field, we can get the aligned PLA on the aluminium hollw. Then, fluorescence stain was used to observe the PC12 growth. The result showed that PC12 can well-attached on the 2D scaffold even controlled the growth direction by the 2D scaffold. Because of the laser focus limitation, we cannot improve their quality. In contrast, 3D scaffold can restrict PC12 to grow in one direction and connect to each other so that we can do the further experiment by this method. Finally, we used FITC-dopamine to observe the communication between PC12. Due to the floating scaffold, it is difficult to observe the FITC-dopamine release from cells in right focus. We need to immobilize the scaffold to assist the observation by confocal microscopy.
Chen, Chih-Hao, and 陳志豪. "Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/72361162532260237392.
Full text義守大學
電機工程學系
102
The repairing process in the nervous system is complicated and brings great challenges to researchers. Tissue engineering scaffolds provide an alternative approach for neural regeneration. The collagen based scaffolds which mimic the topography of natural extracellular matrix (ECM) can be potential scaffold candidates for neural tissue engineering. In this project, we will establish a 50-m porous and bio-degradable collagen scaffold that mimic nature extracellular matrix for 3-D neuron cancer stem cell culture. The aim of this study is to investigate cell multiply and differentiation of neuroblastoma cancer stem cells (NCSCs) on 3-D collagen scaffold growth. Here we will demonstrate a new approach for instant monitor the transitions of morphologically changes and multiply on 3-D scaffold growth by introducing green fluorescence protein (GFP) transgene into NCSCs with lentiviral infection. Under a scanning electron microscopy analysis, the 50-m porous size of collagen scaffold might allow the GFP-NCSCs to adhere with high multiply and neurite out growth formation. To validate the high multiply of GFP-NCSCs growth in 3-D collagen scaffold, the living cell imaging will be taken by confocal laser microscopy and a significant cell mass growth from single cell was observed after 5 days culture. The significant neurite outgrowth of GFP- NCSCs was observed by immunohistochemistry staining with a neuron specific NeuN antibody. These results confirmed that the native conformation collagen scaffold could enhance the attachment, viability, and cell differentiation of the cultured cancer neural stem cells that could provide the application of nerve tissue engineering and nerve regeneration.
Hall, Meghan. "Mathematical model of growth and neuronal differentiation of human induced pluripotent stem cells seeded on melt electrospun biomaterial scaffolds." Thesis, 2016. http://hdl.handle.net/1828/7459.
Full textGraduate