Journal articles on the topic 'Neural ODEs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Neural ODEs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Filici, Cristian. "On a Neural Approximator to ODEs." IEEE Transactions on Neural Networks 19, no. 3 (March 2008): 539–43. http://dx.doi.org/10.1109/tnn.2007.915109.
Full textZhou, Fan, and Liang Li. "Forecasting Reservoir Inflow via Recurrent Neural ODEs." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 17 (May 18, 2021): 15025–32. http://dx.doi.org/10.1609/aaai.v35i17.17763.
Full textCui, Wenjun, Honglei Zhang, Haoyu Chu, Pipi Hu, and Yidong Li. "On robustness of neural ODEs image classifiers." Information Sciences 632 (June 2023): 576–93. http://dx.doi.org/10.1016/j.ins.2023.03.049.
Full textFronk, Colby, and Linda Petzold. "Interpretable polynomial neural ordinary differential equations." Chaos: An Interdisciplinary Journal of Nonlinear Science 33, no. 4 (April 2023): 043101. http://dx.doi.org/10.1063/5.0130803.
Full textZhou, Fan, Liang Li, Kunpeng Zhang, and Goce Trajcevski. "Urban flow prediction with spatial–temporal neural ODEs." Transportation Research Part C: Emerging Technologies 124 (March 2021): 102912. http://dx.doi.org/10.1016/j.trc.2020.102912.
Full textEsteve-Yagüe, Carlos, and Borjan Geshkovski. "Sparsity in long-time control of neural ODEs." Systems & Control Letters 172 (February 2023): 105452. http://dx.doi.org/10.1016/j.sysconle.2022.105452.
Full textKuptsov, P. V., A. V. Kuptsova, and N. V. Stankevich. "Artificial Neural Network as a Universal Model of Nonlinear Dynamical Systems." Nelineinaya Dinamika 17, no. 1 (2021): 5–21. http://dx.doi.org/10.20537/nd210102.
Full textGrunbacher, Sophie, Ramin Hasani, Mathias Lechner, Jacek Cyranka, Scott A. Smolka, and Radu Grosu. "On the Verification of Neural ODEs with Stochastic Guarantees." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 13 (May 18, 2021): 11525–35. http://dx.doi.org/10.1609/aaai.v35i13.17372.
Full textRuiz-Balet, Domènec, Elisa Affili, and Enrique Zuazua. "Interpolation and approximation via Momentum ResNets and Neural ODEs." Systems & Control Letters 162 (April 2022): 105182. http://dx.doi.org/10.1016/j.sysconle.2022.105182.
Full textCuchiero, Christa, Martin Larsson, and Josef Teichmann. "Deep Neural Networks, Generic Universal Interpolation, and Controlled ODEs." SIAM Journal on Mathematics of Data Science 2, no. 3 (January 2020): 901–19. http://dx.doi.org/10.1137/19m1284117.
Full textZakwan, M., L. Di Natale, B. Svetozarevic, P. Heer, C. N. Jones, and G. Ferrari Trecate. "Physically Consistent Neural ODEs for Learning Multi-Physics Systems*." IFAC-PapersOnLine 56, no. 2 (2023): 5855–60. http://dx.doi.org/10.1016/j.ifacol.2023.10.079.
Full textSandoval, Ilya Orson, Panagiotis Petsagkourakis, and Ehecatl Antonio del Rio-Chanona. "Neural ODEs as Feedback Policies for Nonlinear Optimal Control." IFAC-PapersOnLine 56, no. 2 (2023): 4816–21. http://dx.doi.org/10.1016/j.ifacol.2023.10.1248.
Full textSherry, Ferdia, Elena Celledoni, Matthias J. Ehrhardt, Davide Murari, Brynjulf Owren, and Carola-Bibiane Schönlieb. "Designing stable neural networks using convex analysis and ODEs." Physica D: Nonlinear Phenomena 463 (July 2024): 134159. http://dx.doi.org/10.1016/j.physd.2024.134159.
Full textHöge, Marvin, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia. "Improving hydrologic models for predictions and process understanding using neural ODEs." Hydrology and Earth System Sciences 26, no. 19 (October 11, 2022): 5085–102. http://dx.doi.org/10.5194/hess-26-5085-2022.
Full textLi, Haoxuan. "The advance of neural ordinary differential ordinary differential equations." Applied and Computational Engineering 6, no. 1 (June 14, 2023): 1283–87. http://dx.doi.org/10.54254/2755-2721/6/20230709.
Full textZheng, Bohong. "Ordinary Differential Equation and Its Application." Highlights in Science, Engineering and Technology 72 (December 15, 2023): 645–51. http://dx.doi.org/10.54097/rnnev212.
Full textBelozyorov, Vasiliy Ye, and Danylo V. Dantsev. "Modeling of Chaotic Processes by Means of Antisymmetric Neural ODEs." Journal of Optimization, Differential Equations and Their Applications 30, no. 1 (May 5, 2022): 1. http://dx.doi.org/10.15421/142201.
Full textBelozyorov, Vasiliy Ye, and Yevhen V. Koshel. "On Systems of Neural ODEs with Generalized Power Activation Functions." Journal of Optimization, Differential Equations and Their Applications 32, no. 2 (August 30, 2024): 56. https://doi.org/10.15421/142409.
Full textGerstberger, R., and P. Rentrop. "Feedforward neural nets as discretization schemes for ODEs and DAEs." Journal of Computational and Applied Mathematics 82, no. 1-2 (September 1997): 117–28. http://dx.doi.org/10.1016/s0377-0427(97)00085-x.
Full textGonzalez, Martin, Thibault Defourneau, Hatem Hajri, and Mihaly Petreczky. "Realization Theory of Recurrent Neural ODEs using Polynomial System Embeddings." Systems & Control Letters 173 (March 2023): 105468. http://dx.doi.org/10.1016/j.sysconle.2023.105468.
Full textLuo, Chaoyang, Yan Zou, Wanying Li, and Nanjing Huang. "FxTS-Net: Fixed-time stable learning framework for Neural ODEs." Neural Networks 185 (May 2025): 107219. https://doi.org/10.1016/j.neunet.2025.107219.
Full textAlkhezi, Yousuf, Yousuf Almubarak, and Ahmad Shafee. "Neural-network-based approximations for investigating a Pantograph delay differential equation with application in Algebra." International Journal of Mathematics and Computer Science 20, no. 1 (2024): 195–209. http://dx.doi.org/10.69793/ijmcs/01.2025/ahmad.
Full textDe Florio, Mario, Enrico Schiassi, and Roberto Furfaro. "Physics-informed neural networks and functional interpolation for stiff chemical kinetics." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 6 (June 2022): 063107. http://dx.doi.org/10.1063/5.0086649.
Full textFronk, Colby, Jaewoong Yun, Prashant Singh, and Linda Petzold. "Bayesian polynomial neural networks and polynomial neural ordinary differential equations." PLOS Computational Biology 20, no. 10 (October 10, 2024): e1012414. http://dx.doi.org/10.1371/journal.pcbi.1012414.
Full textTappe, Aike Aline, Moritz Schulze, and René Schenkendorf. "Neural ODEs and differential flatness for total least squares parameter estimation." IFAC-PapersOnLine 55, no. 20 (2022): 421–26. http://dx.doi.org/10.1016/j.ifacol.2022.09.131.
Full textSmaoui, Nejib. "A hybrid neural network model for the dynamics of the Kuramoto-Sivashinsky equation." Mathematical Problems in Engineering 2004, no. 3 (2004): 305–21. http://dx.doi.org/10.1155/s1024123x0440101x.
Full textMuppidi Maruthi. "Overview of Artificial Neural Network-Based Solution for Ordinary and Partial Differential Equations by Feed Forward Method Using Python." Communications on Applied Nonlinear Analysis 32, no. 3 (October 19, 2024): 512–24. http://dx.doi.org/10.52783/cana.v32.2012.
Full textWen, Ying, Temuer Chaolu, and Xiangsheng Wang. "Solving the initial value problem of ordinary differential equations by Lie group based neural network method." PLOS ONE 17, no. 4 (April 6, 2022): e0265992. http://dx.doi.org/10.1371/journal.pone.0265992.
Full textBradley, William, and Fani Boukouvala. "Two-Stage Approach to Parameter Estimation of Differential Equations Using Neural ODEs." Industrial & Engineering Chemistry Research 60, no. 45 (November 8, 2021): 16330–44. http://dx.doi.org/10.1021/acs.iecr.1c00552.
Full textHu, Ran, Nan Ma, Bing Li, Kun Chen, Chen Chen, Zhanhua Huang, Fengshu Ye, and Chunpeng Pan. "Black-Box Modelling of Active Distribution Network Devices Based on Neural ODEs." Journal of Physics: Conference Series 2826, no. 1 (August 1, 2024): 012029. http://dx.doi.org/10.1088/1742-6596/2826/1/012029.
Full textNing, Xiao, Jinxing Guan, Xi-An Li, Yongyue Wei, and Feng Chen. "Physics-Informed Neural Networks Integrating Compartmental Model for Analyzing COVID-19 Transmission Dynamics." Viruses 15, no. 8 (August 16, 2023): 1749. http://dx.doi.org/10.3390/v15081749.
Full textAlsharaiah, Mohammad A., Laith H. Baniata, Omar Al Adwan, Orieb Abu Alghanam, Ahmad Adel Abu-Shareha, Laith Alzboon, Nedal Mustafa, and Mohammad Baniata. "Neural Network Prediction Model to Explore Complex Nonlinear Behavior in Dynamic Biological Network." International Journal of Interactive Mobile Technologies (iJIM) 16, no. 12 (June 21, 2022): 32–51. http://dx.doi.org/10.3991/ijim.v16i12.30467.
Full textBailleul, Ismael, Carlo Bellingeri, Yvain Bruned, Adeline Fermanian, and Nicolas Marie. "Rough paths and SPDE." ESAIM: Proceedings and Surveys 74 (November 2023): 169–84. http://dx.doi.org/10.1051/proc/202374169.
Full textNadar, Sreenivasan Rajamoni, and Vikas Rai. "Transient Periodicity in a Morris-Lecar Neural System." ISRN Biomathematics 2012 (July 1, 2012): 1–7. http://dx.doi.org/10.5402/2012/546315.
Full textFabiani, Gianluca, Evangelos Galaris, Lucia Russo, and Constantinos Siettos. "Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs." Chaos: An Interdisciplinary Journal of Nonlinear Science 33, no. 4 (April 2023): 043128. http://dx.doi.org/10.1063/5.0135903.
Full textArif, Muhammad Shoaib, Kamaleldin Abodayeh, and Yasir Nawaz. "Design of Finite Difference Method and Neural Network Approach for Casson Nanofluid Flow: A Computational Study." Axioms 12, no. 6 (May 27, 2023): 527. http://dx.doi.org/10.3390/axioms12060527.
Full textTan, Chenkai, Yingfeng Cai, Hai Wang, Xiaoqiang Sun, and Long Chen. "Vehicle State Estimation Combining Physics-Informed Neural Network and Unscented Kalman Filtering on Manifolds." Sensors 23, no. 15 (July 25, 2023): 6665. http://dx.doi.org/10.3390/s23156665.
Full textB, Vembu, and Loghambal S. "Pseudo-Graph Neural Networks On Ordinary Differential Equations." Journal of Computational Mathematica 6, no. 1 (March 22, 2022): 117–23. http://dx.doi.org/10.26524/cm.125.
Full textSchiassi, Enrico, Mario De Florio, Andrea D’Ambrosio, Daniele Mortari, and Roberto Furfaro. "Physics-Informed Neural Networks and Functional Interpolation for Data-Driven Parameters Discovery of Epidemiological Compartmental Models." Mathematics 9, no. 17 (August 27, 2021): 2069. http://dx.doi.org/10.3390/math9172069.
Full textZhu, Qunxi, Yifei Shen, Dongsheng Li, and Wei Lin. "Neural Piecewise-Constant Delay Differential Equations." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 8 (June 28, 2022): 9242–50. http://dx.doi.org/10.1609/aaai.v36i8.20911.
Full textPatsatzis, Dimitrios G., Lucia Russo, and Constantinos Siettos. "Slow Invariant Manifolds of Fast-Slow Systems of ODEs with Physics-Informed Neural Networks." SIAM Journal on Applied Dynamical Systems 23, no. 4 (December 12, 2024): 3077–122. https://doi.org/10.1137/24m1656402.
Full textHuang, Zhanhua, Ran Hu, Nan Ma, Bing Li, Chen Chen, Qiangqiang Guo, Wuping Cheng, and Chunpeng Pan. "Black-box modeling of PMSG-based wind energy conversion systems based on neural ODEs." Journal of Physics: Conference Series 2814, no. 1 (August 1, 2024): 012005. http://dx.doi.org/10.1088/1742-6596/2814/1/012005.
Full textPuchkov, Andrey Yu, Yaroslav A. Fedulov, Vladimir S. Minin, and Alexander S. Fedulov. "Hybrid digital model based on Neural ODE in the task of increasing the economic efficiency of processing small-ore raw materials." Journal Of Applied Informatics 19, no. 4 (August 21, 2024): 107–25. http://dx.doi.org/10.37791/2687-0649-2024-19-4-107-125.
Full textSamia Atallah. "The Numerical Methods of Fractional Differential Equations." مجلة جامعة بني وليد للعلوم الإنسانية والتطبيقية 8, no. 4 (September 25, 2023): 496–512. http://dx.doi.org/10.58916/jhas.v8i4.44.
Full textZaman, Muhammad Adib Uz, and Dongping Du. "A Stochastic Multivariate Irregularly Sampled Time Series Imputation Method for Electronic Health Records." BioMedInformatics 1, no. 3 (November 16, 2021): 166–81. http://dx.doi.org/10.3390/biomedinformatics1030011.
Full textNiu, Haiqiang. "Evaluation of data-driven neural operators in ocean acoustic propagation modeling." Journal of the Acoustical Society of America 155, no. 3_Supplement (March 1, 2024): A44. http://dx.doi.org/10.1121/10.0026741.
Full textDong, Xunde, and Cong Wang. "Identification of the FitzHugh–Nagumo Model Dynamics via Deterministic Learning." International Journal of Bifurcation and Chaos 25, no. 12 (November 2015): 1550159. http://dx.doi.org/10.1142/s021812741550159x.
Full textYang, Chengdong, Zhenxing Li, Xiangyong Chen, Ancai Zhang, and Jianlong Qiu. "Boundary Control for Exponential Synchronization of Reaction-Diffusion Neural Networks Based on Coupled PDE-ODEs." IFAC-PapersOnLine 53, no. 2 (2020): 3415–20. http://dx.doi.org/10.1016/j.ifacol.2020.12.2543.
Full textHopkins, Michael, Mantas Mikaitis, Dave R. Lester, and Steve Furber. "Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2166 (January 20, 2020): 20190052. http://dx.doi.org/10.1098/rsta.2019.0052.
Full textYin, Qiang, Juntong Cai, Xue Gong, and Qian Ding. "Local parameter identification with neural ordinary differential equations." Applied Mathematics and Mechanics 43, no. 12 (December 2022): 1887–900. http://dx.doi.org/10.1007/s10483-022-2926-9.
Full text